Distributed Control Plane Architecture to support Millisecond routing convergence

Hormuzd Khosravi
Sanjay Bakshi
Intel Corporation

Kunihiro Ishiguro
IP Infusion
Agenda

- Motivation
- Possible Solutions for sub-second convergence
- What is Distributed Control Plane Architecture?
- An example…Distributed OSPF
- Summary
Motivation for Sub-second IGP convergence

- Faster Link Speeds
 - Delayed detection of faults is costly
 - Over-provisioning is costly

- Increased Network Reliability
 - Important for supporting critical services like Video streaming for medical applications

- More cost effective compared to Layer 2 protection schemes like SONET

Difficulties in achieving sub-second convergence

- Millisecond hello interval will increase load on C-Plane CPU, e.g. need to process 600 hellos/sec for 100 interface router
- Dijkstra’s SPF Algorithm complexity is $e \times \log(n)$

Experiments conducted at Intel using Moy’s OSPF code
Possible Solutions for sub-second convergence

- Replace IP routing with fast convergence protocols e.g. MPLS Fast Failure Recovery

- Enable sub-second IP routing convergence by
 - Reduce the Hello/Refresh timer intervals
 - Changes to existing routing protocol specs to use faster algorithms for SPF calculation – OR –
 - Distribute functionality of existing protocols to reduce Control Plane CPU load
What is the Distributed Control Plane (DCP) Architecture?

An architecture that enables seamless distribution of protocol functions across multiple processor levels in the system

- Scalable across multi-tier processor hierarchies
- Control Protocol independence
 - Provide common primitives
- Interconnect independence
 - Support for multiple backplanes
- Modular extensible architecture
 - Well defined interfaces between protocols and other components

Protocol distribution between Control and Line Cards in Network Element
DCP Software Architecture

Control Card

- **DCP Infrastructure Module**
 - Namespace, Binding and Discovery
 - Transport Plugin

- **Controller Protocol Module, e.g. OSPF controller**

- **DCP Communication Library**

Line Card

- **DCP Infrastructure Module**
 - Namespace, Binding and Discovery
 - Transport Plugin

- **DCP Communication Library**

- **Worker Protocol Module, e.g. OSPF Hello processing**

Communication across the interconnect, e.g. IETF ForCES protocol
An example... Distributed OSPF

- C-OSPF: Centralized OSPF
- O-OSPF: Offloaded OSPF
- Hello Traffic
- Remaining OSPF Traffic

Diagram showing the flow of traffic between control cards and line cards in an IXP 2400 network.
Summary

- Distributed Control Plane Architecture facilitates
 - Sub-second IGP Convergence
 - Scalability
 - Faster fault detection
 - Resilience against control plane DoS attacks

- Collaborative research by IP Infusion and Intel R&D
 - Modular software architecture using IP Infusion’s OSPF stack
 - Multi-tier IA, IXP processor based hardware architecture

- DCP Framework can be used to improve performance of control protocols such as OSPF, IS-IS, BGP

Questions?

Contact:
hormuzd.m.khosravi@Intel.com
kunihiro@ipinfusion.com