The future of mobile networking

David Kessens david.kessens@nsn.com

Introduction

- Current technologies
- Some real world measurements
- LTE
- New wireless technologies
- Conclusion

The immediate future in the US

Upgrades to existing infrastructure:

High Speed Packet Access (HSPA)

- Downlink (HSDPA) most deployments up to 7.2Mbit/s
- Uplink (HSUPA) most deployments up to 1.9Mbit/s
- Next stage:
 Evolved High Speed Packet Access
 HSPA+ up to 42Mbit/s up, 11 Mbit/s down

Comparison to DSL at random home in Finland

Another speed test for HSPA:

Driving Around in Suburban Area 40 km/h

LTE: Air Interface Technology

- OFDM-based DL air interface
 - Frequency bandwidth options are 1.4
 MHz, 3.0 MHz, 5 MHz, 10 MHz, 15
 MHz and 20 MHz
 - Also used in WiMax, WLAN (IEEE)

- SC-FDMA in LTE Uplink
 - More power efficient
 - User multiplexing in frequency domain
 - Smallest uplink bandwidth 180 kHz.
 - Largest 20 MHz (terminal are required to able to receive & transmit up to 20 MHz, depending on the frequency band though.)

LTE data rates and UE Categories

- All categories support 20 MHz (L1 data rates can be higher)
- 64QAM mandatory in downlink, but not in uplink (except Class 5)
- 2x2 MIMO mandatory in other classes except Class 1
- Class 3 expected initially

	Class 1	Class 2	Class 3	Class 4	Class 5
Peak rate DL/UL	10/5 Mbps	50/25 Mbps	100/50 Mbps	150/50 Mbps	300/75 Mbps
RF bandwidth	20 MHz	20 MHz	20 MHz	20 MHz	20 MHz
Modulation DL	64Q A M	64Q A M	64Q A M	64Q A M	64Q A M
Modulation UL	16Q A M	16QAM	16Q A M	16Q A M	64Q A M
Rx diversity	Yes	Yes	Yes	Yes	Yes
BTS tx diversity	1-4 tx	1-4 tx	1-4 tx	1-4 tx	1-4 tx
MIMO DL	0 ptional	2x2	2x2	2x2	4x4

LTE Architecture Evolution

HSPA R6

LTE R8

The LTE architecture is flat, only two nodes for the user data

No RNC!

LTE: Voice

- The ultimate LTE voice solution will be VoIP + IMS
 - Circuit Switched (CS) voice will not be possible in LTE since there is no CS core interface
- LTE can rely on CS fallback handover where LTE terminal will be moved to 2G/3G to make CS call

Latency Evolution for HSPA and LTE

LTE technology evolution (LTE-A)

Bandwidth Extension

- High peak data rate of 1 Gbps in downlink and 500 Mbps in uplink can be achieved with bandwidth extension from 20 MHz up to 100 MHz.
- We combine N Release 8 component carriers, together to form N x LTE bandwidth, for example 5 x 20 MHz = 100 MHz etc.

Coordinated Multiple Point Transmission and Reception

 In case fast inter BS connections are available (e.g. optical) fast coordination is no fairy tale anymore

- But practical challenges remain:
 - Downlink reference signal design and multi-cell channel estimation support
 - Uplink terminal feedback and required reporting schemes
 - Definition, configuration and coordination of the cell sets

Relays (RN=Relay Node)

- Main focus is on single-hop relays.
- Main assumption self-backhauled base stations but alternatives are still being discussed.
- Each relay looks like an independent cell, backhaul provided by an in-band connection to the serving base station.

Spectral Efficiency Improves but Only Moderately

- Shannon law limits link performance improvements
- Only moderate gain in spectral efficiency

Not possible to push more bits through macro cell channel due to spectrum limits

Heterogeneous Networks – The Combined Benefit of Wide & Local Area

Conclusion

- Mobile networks are finally being designed and optimized for TCP/IP use
- Mobile emerges as a competitor for fixed broadband
- Large cells will be pushed to the limits with increased data usage
 - Smaller cells are necessary
 - Coverage will improve
- Backhaul will often determine the actual speeds experienced by end-users
- Radio capacity will remain strained with an increased number of Internet users, each using more bandwidth