Andreas Bechtolsheim Arista Networks Inc

June 4, 2012

Original Prediction made in 1965

n	а	n	v

23.05.2011

ITRS Packaging Roadmap

<u>M. Jürgen Wolf</u>

Fraunhofer IZM, Berlin, Dresden, Germany

wolf@izm.fraunhofer.de

© Fraunhofer IZM

📚 Fraunhofer

loore's Law

The observation made in 1965 by Gordon Moore, co-founder of Intel, that the number of transistors per square inch on integrated circuits had doubled every year since the integrated circuit was invented. Moore predicted that this trend would continue for the foreseeable future.

1975 Revision that became known as Moore's Law: The Number of Transistors will double every 2 years

What happened???

Moore's Law 1971-2011

http://upload.wikimedia.org/wikipedia/commons/0/00/Transistor_Count_and_Moore%27s_Law_-_2008.svg

10/29/09 12:49 PM

CPU Transistor Counts 1971-2008 & Moore's Law

Date of introduction

Moore's Law 1971-2011

Date of introduction

Semiconductor Technology Roadmap

Snapshot: Logic Density

System Roadmap Projection

64-bit CPU Cores over Time

I00X Performance by 2022

Memory Hierarchy is Not Changing

NEED FOR NEW COMPUTING MODEL

Technological Transition

Computer architecture has changed. Today's multicore, multi-CPU server provides fast communication between processor cores via main memory of shared cache. Main memory is no torabytes of RAM are available.

Modern computer architectures create new possibilities but also new challenges. With all relevant data in memory, disk access is no longer a limiting factor for performance. In 2012 the performance is a limiting factor for performance in 2012 will be able to process more and more data per time interval. CPU cache and main memory (see Figure 2). An optimized database technology should focus on optimizing memory access by the processing cores. Simple disk access optimizaterformances

To provide an idea about sizes and access speeds of a current memory hierarchy, the table below compares the different layers in this memory hierarchy (CPU characteristics for Intel's Nehalem architecture). Figure 2: Hardware Architecture: Current and Past Performance Bottlenecks

Performance bottleneck today: CPU waiting for data to be loaded from memory into cache Performance bottleneck in the past: Disk I/O

Type of Memory	Size	Latency	
L1 cache	64 KB	-4 cycles [2 ns]	
L2 cache	256 KB	-10 cycles [5 ns]	
L3 cache (shared)	8 MB	35—40+ cycles [20 ns]	
Main memory	GBs up to terabytes	100-400 cycles	
Solid state memory	GBs up to terabytes	5,000 cycles	
Disk	Up to petabytes	1,000,000 cycles	

Hard Disk drives are not keeping up Flash solving this problem just in time

Flash Today: 8 GB per Die, 64 GB per Package

Expect to see 256 GB per package in 2013 and 1 TByte Flash per package in 2015

Moore's Law Summary

- Moore's Law is alive and well
 - 2X Density every 2 Years
- Million-fold advance from 1971-2011
 - Another factor of 100X next 12 years
- Billion-fold advance expected 1971-2031
 - Beyond that, it gets hard to forecast

There has been nothing like this in the history of mankind

Why did Networking not Keep up with Moore's Law?

Three Major Problems

- Moore's Law applies to Transistors, not Speed
 - Transistor count is doubling every 2 years
 - Transistor speed is only increasing slowly
- Number of IO pins per package basically fixed
 - Limited by die area and package technology
 - Only improvement is increased I/O speed
- Bandwidth ultimately limited by I/O Capability
 - Throughput per chip = # IO Pins * Speed/IO
 - No matter how many transistors are on-chip

SERDES Speed (high-density CMOS)

Gbps

8X in 12 Years = 2X every 4 Years

Number of SERDES per Package

SERDES

Modest Increase in 12 Years

Maximum Throughput per Chip

Tbps

ASIC vs Full Custom Chip Design

• ASIC = Application Specific Integrated Circuit

- "Top-down" design, independent of layout
- ASIC vendor does physical implementation
- Difficult to achieve high clock rates this way
- Full Custom Flow
 - Chip design starts with clock rate
 - Data Paths designed to achieve clock rate
 - Only way to get to high clock rates

Typical Result: 8X Higher Density in Full Custom

Full Custom 64 port 10G Switch Chip

64 port 10G Switch: Custom vs ASIC

Custom Design: I Chip

Advantages of Full Custom Chips

Full Custom Chips are Denser (more ports per chip), have much lower latency (due to fewer chip crossings), resulting in system designs that consume less power and are much more reliable than multi-chip designs

ASIC designs are not on Moore's law

Evolution of Custom Switch Silicon

Technology	130 nm	65nm	40 nm	28 nm
10G ports	24	64	128	256
Throughput	360MPPS	960MPPS	2 BPPS	4 BPPS
Buffer Size	2 MB	8 MB	16 MB	32 MB
Table Size	16K	64K	128K	256K
Port Speeds	10G	10/40	10/40/100	10/40/100
Availability	2007	2011	2013	2015
Improvement	N/A	3X/4Y	2X/2Y	2X/2X

Next generation custom switch silicon is on Moore's Law!

Relative Device Densities

Single Chip Throughput (MPPS)

- Next Generations scale with Moore's Law
 - Table sizes double every process generation
 - Industry catching up on process roadmap
- I/O Speed scales less than Moore
 - Larger package sizes offset constraint
 - Next step is 25 Gbps SERDES in 2014
- Full-Custom Design Flow Required
 - ASIC design flow wastes silicon potential

Server 10/40/100G Adoption Cycle

100M 📙 1G 📒 10G 🗧 40G 🔚 100G

Source: Intel LAN Group

Total Datacenter Switch Revenue by Protocol & Speed

CPUs Driving Network Upgrade

- Faster CPUs need Faster Networks
- Sandybridge driving 10 GigE Adoption
- 50% attach rate in 2013, 80% by 2015
- 10/40/100G Market will grow quickly
- From \$4B in 2010 to \$16B in 2016
- From 5M ports in 2010 to 67M ports in 2016
- Faster End nodes need faster Backbones
- Most Traffic going East-West, not North South
- Cluster sizes getting larger and larger

Scaling the Cloud Network

Arista 7050 Switch

64-ports 10G, 960 BPPS, 1.28 Tbps Typical Power 2 Watt/Port

Arista 7500 Switch

384-ports 10G, 5760 BPPS, 10 Tbps Eabric

I wo ways to Scale: LZ or L3

MLAG Spine (L2)

ECMP Spine (BGP)

Scaling With MILAG (LZ)

MLAG Spine (L2)

MLAG provides active-active load-sharing redundancy

Max Throughput: 20 Tbps with current Arista 7500

Maximum Scale: 360 Racks with current Arista 7500

No proprietary Fabric Required

Scaling with ECIVIP (E3)

ECMP provides scalable active-active load-sharing

Max Throughput: 320 Tbps with current Arista 7500

Maximum Scale: 360 Racks using current Arista 7500

ECMP Spine (BGP)

No proprietary Fabric Required

ECIMP SCALE

ECMP Spine (OSPF/BGP)

ECMP	Spine Capacity	Cluster Size	Oversubscriptio n
4-way	40Tb	23000	10:1
8-way	80Tb	21000	5:1
12-way	120Tb	19000	3:1
16-way	160Tb	18000	2.5:1
32-way	320Tb	36000	1.25:1

Planning Guide

- I. Decide pod size and bandwidth per server
 => determines total cluster bandwidth
- 2. Select ECMP Redundancy level (4-32 way) => determines bandwidth per spine switch
- 3. Size Spine switch to match servers / rack and ECMP Fanout Factor

Optimize cost of bandwidth per server

NELWORK UTILITY FUNCTION

The value of a network is not the cost per port, but the cost per bandwidth delivered to servers, including the cost of leaf switches, spine switches, cost of optics, fiber cabling and power over time.

Higher interface speeds only improve utility if they improve \$/Gbps cost-performance, i.e. one 100G port costs < 10*10G ports

Status of 40 GigE and 100 GigE

- IEEE Standards completed years ago
 - 40G and 100G products shipping
- Issue is cost-performance utility
 - 40 GigE > 4X Cost of 10 GigE
 - 100 GigE >>> 10X Cost of 10 GigE
- Biggest problem is optics cost
 - 100 GigE optics are extremely expensive
 - Even 40G optics are > 4X 10G Optics
- Volume Adoption requires Cheaper Optics

10/40/100G Physical Layers for large-scale Datacenters

Leaf-Spine Cluster Configuration

Fiber Technology 17 (2011) 363–367

Fig. 2. Hierarchies of intra-datacenter cluster-switching interconnect fabrics (a) within a single building (b) across multiple buildings.

Reach from leaf-switch to spine switch: 100-300m

Cloud Optics Requirements

- 100-300m Reach, in some cases up to 1km
- Rack-top to spine switch to core router
- Support of 40G and 100Gbps Ethernet
- Ideally over the same fiber infrastructure
- Minimize total solution cost
- Switch Port + Laser + Fiber + Power

10G Today: 10G-SFP+ and 10GBASE-T 48 Ports per 1U Front Panel

Friday, February 25, 2011

SFP+ supports laser and twin-ax copper cables

RJ45 supports I0GBASE-T + I000BASE-T interoperable

10 Year Struggle for 10G to get here: XENPAK, XPAK, X2, XFP, SFP+

10Gbps (4 x 2.5Gbps))GBASECX4/LX4 – Xenpak

eneration, Four Channel, Pluggable Form-factor e" Form-factor compared to GBIC or SFP ired slots in host board al & Copper Applications

y, February 25, 2011

10Gbps (4 x 2.5Gbps))GBASECX4/LX4 – Xpak

r Second generation Xenpak sized – less real estate, less beachfront for slots in host board eliminated cations for Servers/PCI Adapter Cards shipping for legacy products

Friday, February 25, 2011

d generation Xenpak nsized – less real estate, less beachfront d for slots in host board eliminated ch Applications shipping for legacy products

Friday, February 25, 2011

Friday, February 25, 2011

Friday, February 25, 2011

40G Today: QSFP 32-36 Ports per 1U Front Panel

40G-QSFP supports 40G-LR4, 40G-SR4, twin-ax copper and active optical cables

100 GigE PHY MSA Confusion: CFP, CFP2, CFP4, CXP, QSFP+

Friday, February 25, 2011

More choices than original IOG Ethernet

The 10G to 100G MMF Reach GAP

IOG-SR 300m meets most customer requirements

Current State of 100G PHYs

- Highest Demand is for Leaf-Spine Links
- Distances of 100-300m in the Cloud
- In some cases up to 1km
- 100G-SR4 over OM4 is limited to 100m
- Dispersion limit of 25 Gbps in OM4
- No easy way to increase reach
- 100G-LR4 can do 10km over duplex SMF
- However 100G-LR4 is not cost-effective
- No easy way to make it size or power efficient

What to do???

Existing 100G Optics Standards missed the Web/Cloud Datacenter

- No cost-effective solution for 100-500m Reach
- SR4 limited to 100m
- LR4 not cost-effective
- 100G-CFP MSA does not help
- Very large, power hungry, and expensive
- Even CFP2 is way too large
- Many Standards Meetings, limited Progress
- Existing vendors protecting their turf

A cost-effective 100G Solution for the Cloud Datacenter is Needed

- Goal is to minimize overall system cost
- Total cost = Laser + Fiber + Power
- Maximize 100G port density
- Allow 48 ports 100G per 1U
- Minimum Reach 300m
- Able to support 500m up to 1km

Existing IEEE Standards have not addressed this

Solution: SiliconPhotonics over parallel Single Mode Fiber (pSMF)

- Lowest overall system cost
- Lowest cost fiber
- Lowest cost transceiver
- Lowest power transceiver
- Highest 100G port density
- Allows more than 48 ports 100G per 1U
- Supports 10m 1km reach
- One solution can handle all requirements

Parallel 24F Fiber Cable

12 duplex channels in 4.5mm, 12X denser than Cat-5e Much lower cost than individual duplex fiber cables

MTP/MPO Multi-Fiber Connector

Friday, February 25, 2011

Invented by NTT in Japan in 1980's for Telecom This has become the standard for multi-fiber termination in large-scale data centers

MTP/MPO Multi-fiber Connector

Maintaining Polarity In Cassette-Based Systems

PANDUIT EFEBENC TR:39

Purpose

Purpose Optical fiber links typically require two fibers to make a complete circuit. Optical transceivers have a transmit side and receive side, and typically employee a duplex fiber connector as the interface. In any installation, it is important to ensure that the optical transmitter at one end is connected to the optical receiver at the other. This matching of the transmit signal (Tx) to the receive equipment (Rx) at both ends of the fiber optic link is referred to as polarity. For traditional cabling systems using single fiber connectors, such as LC or SC, maintaining polarity is any patch cord or permanent link. This procedure is well documented in the TIA/EIA-568-B.1 standard. Pre-terminated, high-density cabling systems based on MTP*/MPO array connectivity require a new set of design for maintaining polarity in pre-terminated MTP* systems are reviewed. In this document, three different methods TIA/EIA-568-B.1-7. The methods define installation and polarity management practices, and provide guidance in the deployment of these types of fiber array links. Once a method is chosen, these practices must be put into place to insure proper signaling throughout the installation.

MTP*/MPO Array Connectors

As a single fiber connector terminates 1 fiber per connector, array connectors terminate multiple fibers in a single high-density interface. 12-fiber array connectors are the most common, though 4-, 6- and 8-fiber connectors are also available. Array connectors are employed in high-density permanent link installations and can be found in pre-terminated cassettes, trunk and hydra cable assemblies used extensively in data centers. Cassettes and hydra cable assemblies used extensively in data centers. Cassettes and fiber connectors in the switches.

Array connectors, shown in Figure 1, are pin and socket connectors -- requiring a male side and a female side. Cassettes and hydra cable assemblies are typically manufactured with a Male (pinned) connector. Trunk cable assemblies typically support a Female (unpinned) connector. The connectors are also keyed to ensure that proper endface orientation occurs during the mating process. Generally, when looking at the endface of the connector, shown in Figure 2.

Figure 1 – 12-Fiber MTP* Male and Female Connectors

Figure 2 – MTP* Connector Fiber Positions Relative to Key

Supports 12 fibers per row, 24 per 2 rows, etc Highest density fiber connector on the market

24 Fiber MPO Connector

²O Position Definition per TIA 604-5-D

24F MTP Connector can handle 3x40/100G or 12 10G Ethernet channels

EN 50173-5 (2007) Standard

Only two fiber connectors in EN standard: LC for duplex MPO connector for parallel fiber structured cabling

TIA-942 and EN 50173-5 Datacenter Fiber Standards

Different terminology, same basic idea

Fiber Cable Cost Comparison

Fiber Cable	\$/8F 300m	\$/2F 300m	Relative Cost
2F OM4	\$720	\$180	540%
24F OM4	\$566.67	\$141.67	425%
2F SMF	\$266	\$66.66	200%
24F SMF	\$133	\$33.33	100%

Parallel SMF cable is by far the lowest cost solution

100G Ports Total Cost Comparison

Element	Current Choice	Best Choice	Cost Reduction	Comments
Fiber	pMMF	pSMF	75-80%	Parallel SMF is 1/4 the cost of pMMF
Optics	VCSEL	SiPh	TBD	Silicon Photonics is lower cost than VCSEL
Reliability	Good	Highest	TBD	Significant life cycle Cost Reduction
Power	2W	1W	50%	Power Reduction is key for density
Total				

Total Cost = Equipment Laser + Fiber + Power (3Y)

Datacenter Optics Conclusions

- Silicon Photonics is good
- Lowest cost, lowest power, highest reliability
- Supports 100m-300m reach requirement
- Parallel SMF Cable is good
- Saves 75% in cost over OM4
- However most installed cable is MMF
- Fewer Fiber Connectors is good
- Reduces installation costs
- Fewer things that can go wrong

Summary

- Datacenter Switching back on Moore's Law
- Rapid cost-performance improvements ahead
- Expect 2X improvement every 2 Years
- 40G and 100G Adoption limited by costs
- What matters is cost of bandwidth
- Particular problem is optics costs
- Silicon Photonics with pSMF look promising
- Lowest known optics and fiber cost
- A lot less cables and connectors