“Anycasting” f.root-servers.net

Suzanne Woolf
January 2003
Threat or Menace?

• “Anycasting a root name server” sounds radical. It’s not.
 – Natural extension of simple redundancy techniques
 – Technology is familiar to the community
 – Response to serious but familiar threats: DDoS and network degradation
Necessary Distinctions

• Local load balancing
 – Sometimes called clustering
 – Maybe using an appliance

• Distributed load balancing
 – Might just be a diverse set of NS RRs
 – Or it might be that a single NS RR is global

• Policy based (directed) load balancing
 – Different answers in different regions
 – We call this “Stupid DNS tricks” (don’t do it!)
Local Load Balancing (1)

- An L4 switch with health monitoring can distribute query load across a cluster
- This “extra powered box” is a failure point
- Sometimes requires that all TCP land on a single host instance (with fallback)
- Sometimes requires that a single MAC address be used by all cluster members
- This is really the wrong approach
Local Load Balancing (2)

- Using routers and switches that you probably already have in the data path…
- Use GateD/Zebra for host-based OSPF
- Assign a single service address as an “lo0” alias on all members of the cluster
- OSPF “stub host” logic advertises it
- Modern Cisco (CEF) and Juniper (IP-II) routers will do flow hashed load sharing
F-Root
1/19/2003
Distributed Load Balancing (1)

• Core internet routing protocol is BGP, which is loosely distance-vector based.
• When multiple paths exist, one is chosen, usually based on AS-path length.
• This is not useful for actual load balancing:
 – Geography != Topology
 – Too coarse-grained
 – Depends on other ISPs’ policies
Distributed Load Balancing (2)

• BGP routes can be tagged “no-export” to ensure that there is no “accidental transit”
 – F-root only has transit at PAIX Palo Alto
• Thereby one can collect traffic from a deliberately restricted part of the topology
• For example, all peers at an exchange point
• This is especially useful for partitioning DDoS attacks and keeping them “local”
Distributed Load Balancing (3)

• Each wide area F-root has its own AS number and its own “management” /24
• The management /24 gets transit from multiple ISPs over private crossover-ether
• The “F” /24 is advertised through the public exchange point, tagged with “no-export”
• Attacks are localized, and do not interfere with network management
• Exchange point fabric means no “DDoS bottleneck”
Other Advantages

• Fluidity: add or drop servers or cities at will
 – To upgrade a host or city, drop then add
 – Failures are local and meaningless
 – Add capacity or shift load during attacks
 – Headroom, headroom, headroom!

• Measurement: triangulate on DDoS sources
 – Source routing and source spoofing don’t mix
Other Root Servers

• Others are also looking at wide-area distributed load-balancing, but
• Diversity is a major strength of the root nameserver system, so
• Each server operator has their own strategy
Others (2)

- K.root-servers.net (RIPE-NCC) is working on a detailed plan with RIPE members
- C.root-servers.net (Cogent) has instances located in several Cogent datacenters
- J.root-servers.net (Verisign) has instances collocated with their gTLD servers
- Some others are considering costs and architectures
FAQ

• Do you retain administrative control of the F-root instances? *YES*
• Have you provisioned OOB monitoring and troubleshooting? *YES*
• Why not let ISPs do it?

ISPs run networks. We run root name servers, including responsibility for integrity of the data.
Any Questions?

….Or contact us at ISC:

Paul Vixie
paul@vix.com