Disclaimer

- The views presented are of the author and do not necessarily represent Juniper Networks.
Topics

1. VPN basic concepts
2. Hierarchical and recursive applications
Part 1 - Basic concepts

- Introduction
- How it works
- Scalability
- Connectivity models
VPNs

- Virtual Private Networks - provide a private network over a shared infrastructure.

- Interconnect geographically separate sites, with the same privacy and guarantees as a private network.
VPNs

Site 1

VPN green

Site 2

VPN green

Provider network

Site 3

VPN green

Site 4

VPN green
The Overlay Model for VPNs

- Sites are connected with p2p links - leased lines, FR circuits, ATM circuits, GRE, IPsec.
- Customer routers peer with customer routers.
- The provider needs to design and operate “virtual backbones” for all the customers - scaling issue.
- Problem with VPNs that have a large number of sites.
- Adding a new site requires configuring all the existing sites.
BGP-MPLS VPNs

- **Goal:** solve the scaling issues. Support thousands of VPNs, support VPNs with hundreds of sites per VPN, support overlapping address space.

- **Peer model - customer routers peer with provider routers.**
Properties of the model

- CE router peers with a PE router, but not with other CE routers.

- Adding/deleting a new site requires configuring the PE router connected to the site.

- A PE router only needs to maintain routes for the VPNs whose sites are directly connected.
Goals

- Achieve intersite connectivity
- Privacy – don’t allow traffic from one VPN to be seen in another VPN
- Independent addressing - private addresses in each VPN.
Part 1 - Basic concepts

- Introduction
- How it works
- Scalability
- Connectivity models
BGP-MPLS VPNs - areas

- Separation of forwarding
- Distribution of routing information
- New address type
- Forwarding with MPLS
Operation - separation of forwarding

- Goal: control connectivity and ensure privacy by segregating the forwarding information.

- PE router connected to CEs from several VPNs.

- With a single forwarding table, it is possible to forward packets from one VPN to another.
Multiple forwarding tables

- Multiple forwarding tables - each table associated with a site.
- Packets from the customer are identified based on the incoming port, which identifies the forwarding table.
- Contents: routes received from the CE, and routes received from remote PEs with constrained routing.

- Called VPN routing and forwarding table - VRF.
Operation - Constrained distribution of routing information

- The idea:
 1. CE advertises routes to the local PE via some routing protocol.
 2. The local PE marks these routes with a particular extended community (route target) and advertises them in BGP.
 3. The routes are distributed to all remote PE by BGP.
 4. Remote PE receives BGP routes, filters them based on the community and advertises them to the CE.
Constrained route distribution - the need for unique addresses

Site 1
10.1/16
Customer green

CE1

Site 2
10.2/16
Customer green

CE2

CE3

Site 1
10.1/16
Customer gray

CE4

Site 2
10.1/16
Customer gray

10.1/16 route-target green
10.2/16 route-target green

10.1/16 route-target gray
10.2/16 route-target gray
The model so far (1)

- The P routers carry all VPN routes, so the addresses used in the VPNs need to be unique in the provider’s network.
Operation: overlapping address space and VPN-IP addresses

- **Goal:** turn non-unique addresses into unique addresses.

- Constructed by concatenating an IP address and an 8 byte unique identifier called the route distinguisher.

- Route Distinguisher - 8 bytes - doesn’t have to be the same for all routes in the VPN. Typical values: either AS:number or IPaddress: number.
VPN-IP addresses (cont)

- Advertised in a special address family by BGP (MP-BGP)
- Used only in the provider’s network.
- Used only in the control plane.
- The translation from IP addresses to VPN-IP addresses happens on the PE.
- Not used for route filtering (we use communities for that).
Example using VPN-IP addresses

Customer green

Site 2
10.2/16

CE2

CE4

Customer gray

Site 2
10.1/16

Customer green

Site 1
10.1/16

CE1

Customer gray

Site 1
10.2/16

CE3

RD1: 10.1/16 route-target green
RD2: 10.1/16 route-target gray
RD1: 10.2/16 route-target green
RD2: 10.2/16 route-target gray
The model so far (2)

- Can use overlapping address space.
- How to forward based on VPN-IP addresses?
- The P routers still carry all the VPN routes.
Why MPLS?

- VPN-IP addresses are used by the routing protocols, but do not appear in headers of IP packets.

- Need a way to forward traffic along routes to VPN-IP addresses. MPLS decouples forwarding from the destination information.
Forwarding traffic - so far (1)

Site 1
10.1/16
VPN green

Site 2
10.2/16
VPN green

Site 1
10.1/16
VPN green

Site 2
10.2/16
VPN gray

PE1
10.2.1.1
10.1/16 interface to CE1

PE2
10.2.1.1
10.2/16 from PE2

Label
10.2.1.1

CE4
Site 1
10.1/16

CE2
Site 2
10.2/16

CE3
Site 2
10.2/16

CE1
Site 1
10.1/16

VPN gray
Forwarding traffic - so far (2)
VPN labels

- The idea: **Use a label to identify the next-hop at the remote PE.** Also called VPN label.
- The label is distributed by BGP, along with the VPN-IP address.
- Traffic will carry two labels, the VPN label and the LSP label.
- The remote PE makes the forwarding decision based on the VPN label.
Forwarding traffic - revisited

Site 1
10.1/16
VPN green

CE1

Site 2
10.2/16
VPN green

CE2

10.2.1.1
PE1

VPN Label
10.2.1.1

CE4

Site 1
10.1/16
VPN gray

CE4

10.2.1.1
PE2

VPN Label
10.2.1.1

CE3

Site 2
10.2/16
VPN gray

CE3

10.2.1.1
P

VPN Label
10.2.1.1

P

P
Forwarding traffic - revisited

Site 1
10.1/16
VPN green

CE1

Site 2
10.2/16
VPN green

CE2

VPN gray

Site 1
10.1/16
VPN gray

CE4

10.2.1.1
VPN Label

PE1

P

P

PE2

Site 2
10.2/16
VPN gray

CE3

10.2.1.1
VPN Label

Label

VPN Label
10.2.1.1

VPN Label
10.2.1.1
The VPN model - summary

- P routers don’t need to maintain VPN routes at all. Only need to maintain routes to other P and PE routers.
- PE routers maintain VPN routes, but only for VPNs that have sites attached to them.
- VPNs can have overlapping address spaces.
Routing exchanges / traffic forwarding

Traffic →

← Routing info
The whole picture 2 - route distribution

- **Site 1**
 - 10.1/16
 - CE1
 - 10.2/16
 - CE4

- **Site 2**
 - 10.2/16
 - CE2
 - 10.2/16
 - CE3

- **PE1**
 - Accept route-target green
 - 10.2/16 nh PE1

- **PE2**
 - LSP to PE2
 - PE2: push 200
 - (RD:10.2/16, label 1001) route-target green nh PE2

- **PE3**
 - if1
 - if2
 - if3
 - if4

- **CE1**
 - Site 1
 - 10.1/16

- **CE2**
 - Site 2
 - 10.2/16

- **CE3**
 - Site 2
 - 10.2/16

- **CE4**
 - Site 1
 - 10.1/16

Traffic → Routing info
The whole picture 3- forwarding tables

Site 1 10.1/16

CE1

Site 2 10.2/16

CE3

Site 1 10.1/16

CE4

PE3

LSP to PE2

PE1

PE2

PE3

PE2: push 200

MPLS table

In: if3, label 1001
Out: pop label, send to if4

VRF green

10.2/16

Out: push (1001, 200)

(RD:10.2/16, label 1001) route-target green nh PE2

10.2/16 nh PE1

10.2/16 nh if1

10.2/16 nh CE2
The whole picture 4- forwarding traffic

VRF green

10.2/16 nh if1

Site 1
10.1/16
10.2.1.1

CE1

if1

PE1

200
1001
10.2.1.1

(PE2,200) (PE2,100)

PE2

100
1001
10.2.1.1

(PE2,3)

Site 2
10.2/16
10.2.1.1

CE2

if4

In: if3, label 1001
Out: pop label, send to if4

10.2/16
Out: push (1001, 200)

MPLS table
The whole picture - summary

- Full mesh of BGP between all PEs.
- MPLS connectivity between all PEs.
- BGP advertises a label along with the VPN-IP address. This determines the next-hop to use when receiving traffic.
Concepts

1. Use MPLS to forward traffic across nodes that don’t have routing information for the packet’s final destination.
2. Use a label to mark the traffic. Use this marking to determine the next-hop.
3. The address of the next-hop in the BGP advertisement provides coupling between the VPN routes and the internal routing to the remote PE.
Part 1 - Basic concepts

- Introduction
- How it works
- Scalability
- Connectivity models
Scaling properties

- Only one routing peering (CE-PE), regardless of the number of sites in the VPN.

- The customer doesn’t need routing skills. A customer doesn’t need to operate its own backbone.

- Adding a new site requires configuration of one PE regardless of the number of sites (constant # of changes required to add a new site)
Scaling properties

- PE has to maintain routes only for the VPNs to which it is connected.

- P routers don’t have to maintain VPN routes at all.
Scaling properties

- Can use overlapping address spaces - efficient use of private IP addresses.

- Route distinguishers are structured so that each service provider can manage its own number space.
Part 1 - Basic concepts

- Introduction
- How it works
- Scalability
- Connectivity models
Intersite connectivity

- Achieved through constrained distribution of routing information.
- Done by the PE:
 - No expertise required from the customer.
 - No configuration necessary on the customer box.
- Extended communities allow definition of very flexible policies.
Intersite connectivity models

- Connectivity models
 - Any-to-any
 - Hub and spoke

- Any other combination also possible.
Hub and spoke

- The goal: make all the traffic originated at spoke sites go through one hub site (e.g. for implementing a firewall)

- The hub site has knowledge of all destinations in the spoke sites.
Hub and spoke

- Spoke sites export routes to the hub site using the “spoke” route target.
- The hub site re-exports these routes with a “hub” route target.

- Spoke sites only import routes with community “hub”.
- Traffic will flow from the spoke sites through the hub.
Hub and spoke

Site 1
10.1.1/24

Site 2
10.1.2/24

RD2: 10.1/16 route-target hub nh PE3
Accept route-target spoke
RD1: 10.1.2/24 route-target spoke nh PE2
RD3: 10.1.1/24 route-target spoke nh PE1
Part 2 - Hierarchical and recursive applications

- Introduction
- ISP as a VPN customer
- VPN service provider as a VPN customer
- VPN services across AS boundaries
VPN customer is himself a service provider: ISP or VPN service provider.

Carriers carrier - all customer sites are in the same AS.

Multi-AS operations - the customer sites have different AS numbers (VPN service spans two providers)
Introduction - terminology

- External routes - learned from peering points or from customers. Carried in BGP.

- Internal routes - include the provider’s internal links (including BGP next-hops) and loopbacks. Carried in the IGP.
Concepts we saw previously

- Use MPLS to forward traffic across nodes that don’t have routing information for the packet’s final destination.

- Use a label to mark traffic. Use this marking to pick the correct next-hop.

- The BGP next-hop is the glue between external routes and internal routes.
Part 2 - Hierarchical and recursive applications

- Introduction
- ISP as a VPN customer
- VPN service provider as a VPN customer
- VPN services across AS boundaries
ISP as a VPN customer

- **Goal** - interconnect geographically separate sites of the ISP (e.g. POPs).

- Also known as “Carriers carrier”, section 9 of 2547bis.

- **Two scenarios:**
 - No MPLS within the sites - within a site, forward based on IP.
 - With MPLS within the sites - can use MPLS to forward within a site.
ISP as a VPN customer - step (1)

- **The problem:**
 - Requires the PE routers to carry a full set of internet routes as VPN-customer routes... for each such customer...
 - Requires the VPN provider to distribute the routes for each of the customers throughout the network (large amount of routing information).

- **The solution:** let the customer be responsible for the external routes.
ISP as a VPN customer - no MPLS within sites
ISP as a VPN customer - step (1)

- External routes are exchanged via BGP between the two geographically dispersed sites.

- Need to be able to establish BGP sessions across the VPN provider => must have routes to the routers in the other POP.

- Advertise the internal routes as the VPN customer routes.
ISP as a VPN customer - scenario 1 - no MPLS within the customer sites

- No MPLS in the customer sites.

- Goal - the provider doesn’t want to carry the customer’s external routes.
The abstraction - routing (no MPLS within the customer sites)

Peer network 2

EBGP

IBGP for the external IP routes

Peer network 1

EBGP

I BGP family inet

VPN for the routes to the I BGP nexthops

ASBR2

ASBR1
Routing exchanges / traffic forwarding

Site 2

Traffic →

Site 1

← Routing info
ISP as a VPN customer - exchange of routing information - (no MPLS in sites)
ISP as a VPN customer - forwarding traffic - the solution so far

20.1/16 nh ASBR1
ASBR1 nh CE2

ASBR2
Site 2
R2
CE2

20.1.1.1

20.1/16 nh ASBR1
ASBR1 nh PE2

VRF green
In: if2, ASBR1
Out: push (1001, 400), if4

20.1/16 nh ASBR1
ASBR1 nh CE2

IBGP

20.1/16

ASBR1
R1
Site 1
CE1

PE1
if1
R1

PE2
if2
R2
if3
if4

20.1.1.1

???
ISP as a VPN customer - step 2

- **New problem** - When forwarding customer traffic to an internet destination, the PE doesn’t have a route.

- The PE only has routes for the customer’s internal routes.

- **The solution** - Use MPLS to forward traffic across nodes that don’t have a route to the destination. Need to extend MPLS to the CE.
The abstraction - forwarding

20.1/16 nh ASBR1

ASBR2

Label switched path

CE2

CE1

ASBR1

20.1.1.1

IP

20.1.1.1

MPLS

20.1.1.1

IP

20.1.1.1

MPLS

20.1.1.1

IP

20.1.1.1

...
ISP as a VPN customer - no MPLS within sites - conceptual model
ISP as a VPN customer - step 2

- The CE forwards the traffic over MPLS to the remote CE that will have an IP route for the external route.
- The local CE needs a label-switched-path to the remote CE.
- When the PE advertises the VPN routes to the CE, it also advertises a label for them. This extends MPLS to the CE. **We are using this label to pick the next-hop on the PE.**
ISP as a VPN customer - exchange of routing information - revisited

- **IBGP family inet**
 - \(D = 20.1/16, \text{nh} = \text{ASBR1}\)

- **EBGP family inet**
 - \(\text{ASBR1, nh PE2, 2001}\)

- **IBGP family inet-vpn**
 - \(D = \text{RD:ASBR1, nh=PE1, label=1001}\)

- **CE-PE protocol**
 - LDP
 - \(D = \text{PE1,label = 400}\)

- **In 2001 out (1001, 400)**
ISP as a VPN customer - exchange of routing information - revisited

EBGP family inet
D= ASBR1, nh = CE1
In 2001, out if1

EBGP family inet labeled-unicast
D= ASBR1, nh = PE2, label 2001
In 2001, out (1001, 400)

EBGP family inet labeled-unicast
D= ASBR1, nh = CE1, label 0
In 1001, out if1, 0)
ISP as a VPN customer - exchange of routing information - revisited

EBGP family inet labeled-unicast
D= ASBR1, nh = PE2, label 2001
In 2001 out (1001, 400)

EBGP family inet labeled-unicast
D= ASBR1, nh = CE1, label 0
In 1001, out if1, 0)
ISP as a VPN customer - forwarding traffic

20.1/16 nh ASBR1
ASBR1 nh CE2

20.1.1.1

ASBR2
Site 2

20.1/16 nh ASBR1
ASBR1, nh PE2, 2001

2001
20.1.1.1

VRF green
In: if2, label 2001
Out: (1001, 400), if4
New concepts

- The label is meaningful for the box that assigned it (it identifies the next-hop to be used for forwarding).

- When assigning a new label, must install MPLS forwarding state. This stitches the two LSPs together.
ISP as a VPN customer - no MPLS within sites - summary

- The VPN provider doesn’t carry the customer’s external routes in its backbone, it only carries the customer internal routes (BGP next-hops).

- A labeled-switched path is established between the remote CEs.

- The IP traffic to external destinations travels over this label-switched-path to the remote CE.
ISP as a VPN customer - scenario 2

- With MPLS in the customer sites.

- Goal - the provider doesn’t want to carry the customer’s external routes.
ISP as a VPN customer - MPLS in the customer sites - The idea

- Can use MPLS to forward traffic in the customer’s sites.
- No need for all the routers to carry the external routes. Rely on MPLS to forward traffic to destinations for which the transit routers don’t have routing entries.
- Need a label-switched path between the routers that carry the external prefixes.
The abstraction – forwarding

20.1/16 nh ASBR1

ASBR2

Label switched path to ASBR1

ASBR1

20.1.1.1

IP

20.1.1.1

MPLS

20.1.1.1

…

MPLS

20.1.1.1

IP

20.1.1.1
ISP as a VPN customer - MPLS in the customer sites - conceptual model

20.1.1.1

MPLS

20.1.1.1

20.1/16 nh ASBR1

ASBR2

Site 2

R2

CE2

MPLS

Site 1

MPLS

R1

ASBR1

CE1

if2

if1

if3

if4

PE2

PE1
The abstraction - the label-switched-path

ASBR2

Label switched path

ASBR1

ASBR2

MPLS

MPLS

MPLS

CE2

CE1

ASBR1
ISP as a VPN customer - with MPLS in the customer sites

- The label-switched path between the ASBRs is made up of several segments.

- In the previous scenario we saw how to establish a CE-CE label-switched path.

- Need to stitch the CE-CE path with the CE-ASBR paths.
Routing exchanges / traffic forwarding

Site 2

Traffic →

Site 1

← Routing info
Establishing a path between the ASBRs
(1) CE2-to-CE1

ASBR1, nh (PE2, 2001)
EBGP inet labeled-unicast
ASBR1:nh PE2, 2001

ASBR1, nh (PE1, label 1001)

ASBR1, push (1001, 400)

In 2001 out (1001, 400)

PE1, push 400

EBGP inet labeled-unicast
ASBR1:nh CE1, label

EBGP family inet-vpn
D= RD:ASBR1, nh=PE1, label=1001

LDP
D = PE1,label = 400

if1

Site 1

Site 2
Establishing a path between the ASBRs
(2) CE2-to-CE1

ASBR2

Site 2

CE2

R2

ASBR1, nh PE2, 2001

Site 1

CE1

R1

MPLS

PE1

PE2

In 2001 out (1001, 400)
Establishing a path between the ASBRs (3) ASBR2-to-CE2

The problem - need an MPLS path to CE2.
Establishing a path between the ASBRs (4) ASBR2-to-CE2

- ASBR1, nh CE2, 4001
- ASBR1, (4001, 500)
- In 2001 out (1001, 400)
- In 4001, out 2001
- In 500 out pop
- CE2, push 500
- (CE2, 500)
- LDP
- In 2001 out (1001, 400)
- Site 1
- Site 2
- PE1
- PE2
- ASBR1
- CE1
ASBR2-to-CE2 - discussion

- Requires a two label push at ASBR2.
- One label identifies ASBR1, and the other label identifies the path to CE2 which is the router that injected ASBR1.
- The route for ASBR1 doesn’t need to be known inside Site2.
Establishing a path between the ASBRs (5) CE1-to-ASBR1

IBGP inet labeled-unicast
ASBR1:nh CE2, 4001
ASBR1:push 0, 100
In 100 out pop
ASBR1, nh ASBR1, 0
ASBR1, push 100

LDP
(ASBR1,3)
(ASBR1,100)

Site 1
Site 2
CE1
CE2
R1
R2
ASBR1
ASBR2
PE1
PE2

if1
Establishing a path between the ASBRs (6) PE1-to-ASBR1

ASBR2

Site 2

CE2

R2

ASBR1

Site 1

CE1

R1

PE2

PE1

ASBR1:nh CE1, 3001

EBGP inet labeled-unicast

ASBR1:push 0, 100

In 3001

out push (0, 100)
Establishing a path between the ASBRs (7) ASBR2-to-CE2-to-CE1-to-ASBR1

ASBR1, (4001, 500)

Site 1

ASBR2

(CE2, 500)

Site 2

LDP (CE2, pop)

In 4001, out 2001

MPLS

In 500 out pop

ASBR1

In 100 out pop

Site 1

CE1

In 3001, out (0, 100)

PE2

In 2001 out (1001, 400)

PE1

In 1001 out 3001
Forwarding traffic along the ASBR2-ASBR1 path

20.1.1.1

20.1/16 nh ASBR1
ASBR1, (4001, 500)

In 100 out pop

In 3001 out (100, 0)

In 500 out pop

ASBR2

In 4001, out 2001

2001

20.1.1.1

PE2

400

In 1001 out (1001, 400)

In 2001 out (1001, 400)

400

1001

20.1.1.1

PE1

1001

20.1.1.1

CE1

In 3001 out (100, 0)

In 100 out pop

0

20.1.1.1

20.1.1.1

100

0

20.1.1.1

3001

20.1.1.1

if1
ISP as a VPN customer - with MPLS in the customer sites

- Can use MPLS to forward traffic in the customers sites.

- Can isolate the knowledge of the external routes to the ASBRs.
ISP as a VPN customer - scenario 2 - revisited - using LDP

- Can use either LDP or labeled-BGP inside the sites (so far the example only showed labeled-BGP).
Establishing a path between the ASBRs - LDP instead of labeled BGP

Make LDP advertise a FEC for ASBR1.
LDP instead of labeled-BGP

- Can use LDP to advertise the route to ASBR1. (requires support of this behavior in LDP).
- Requires redistribution of the route to ASBR1 into the IGPs. (redistribution from BGP to IGP).
- All routers in site2 will carry an IGP route for ASBR1.
Part 2 - Hierarchical and recursive applications

- Introduction
- ISP as a VPN customer
- VPN service provider as a VPN customer
- VPN services across AS boundaries
VPN service provider as a VPN customer

- **Goal:** provide connectivity for geographically dispersed sites of a VPN service provider.
VPN service provider as a VPN customer

VPN service provider - provides transit for VPN-provider-green
VPN service provider as a VPN customer

◆ The problem:
 - Want to avoid having to carry the VPN routes (red, blue routes) of the VPN-customer (VPN-provider-green) in the VPN-provider network (transit provider).

◆ The solution:
 - Let the VPN customer (VPN-provider-green) be responsible for its VPN routes (which are in effect external routes).
The abstraction - routing

IBGP for the external VPN customer routes

IBGP family inet-vpn

Red site 1

LSP

PE4

PE3
VPN service provider as a VPN customer

- The same as the ISP as a customer scenario with MPLS in the customer sites.
- All customer sites are in the same AS.

Differences:
- The routes exchanged between the customer routers are VPN-IP routes instead of IP routes.
- Three label push (when labeled-BGP is used)
Routing exchanges / traffic forwarding

Site 2 ➔ Traffic ➔ Site 1

← Routing info
VPN service provider as a VPN customer

Site 1:
- PE3, (4001, 500)
- PE4

Site 2:
- PE3, (4001, 500)
- PE2

Red site:
- CE1
- CE2

MPLS:
- In 500 out pop
- In 3001, out (0, 100)
- In 1001 out 3001

LDP:
- (CE2, pop)

In 2001:
- In 2001 out (1001, 400)
- In 4001, out 2001
- In 4001, out pop

In 100:
- In 100 out pop
- In 1001 out 3001
VPN service provider as a VPN customer

10.1/16

(RD:10.1/16, label red) nh PE3

PE3: (4001, 500)

10.1/16: (red, 4001, 500)
VPN service provider as a VPN customer

Since the routes exchanged are VPN-IP routes, forwarding traffic to from one site to another will require a 3 label push:

- One label identifying the VPN-IP route
- Two labels to reach the remote PE (when labeled BGP is used within sites).
Part 2 - Hierarchical and recursive applications

- Introduction
- ISP as a VPN customer
- VPN service provider as a VPN customer
- VPN services across AS boundaries
VPN services across AS boundaries

- So far we’ve seen examples where all sites in a VPN are connected to the same AS.

- What if not all sites are in the same AS?

- Useful if:
 - VPN sites are connected to different providers
 - The provider’s backbone is partitioned among different AS.
Sites in different AS

- Red site 1
- Blue site 1
- PE2
- Red site 2
- Blue site 2

VPN-provider-green

VPN-provider-gray

PE1
VPN services across AS boundaries

◆ **The problem** - can’t run I BGP between the remote sites anymore.

◆ **The solutions:**
 - Discussed in section 10 of 2547bis and referred to as “Option a”, “Option b” and “Option c”.
Option A - VRF-to-VRF connections

- A PE router in one AS attaches directly to a PE router in another AS.
- There are several interfaces between the PEs, one for each VPN whose routes are passed between AS.
- Each PE treats the other as a CE and exchanges the VPN routes using EBGP on a per-VRF basis.
Option A - VRF-to-VRF connections

- Blue site 1
- Red site 1
- PE2
- Blue site 2
- Red site 2
- PE1

EBGP family inet
Option A - VRF-to-VRF connections

- Major scaling issues:
 - All VPN routes are exchanged.
 - Multiple EBGP sessions need to be maintained.
 - The ASBRs must carry a large number of routes.
Option B - EBGP redistribution of labeled VPN-IP routes between ASBRs

- The PE routers use IBGP to redistribute labeled VPN-IP routes to an ASBR.

- The ASBR uses EBGP to redistribute the labeled routes to an ASBR in a different AS.

- Requires a label-switched path across AS between the PEs.
Option B - EBGP redistribution of labeled VPN-IP routes between ASBRs

All routes exchanged are labeled VPN-IP.
Option B – EBGP redistribution of labeled VPN-IP routes between ASBRs

- More scalable than option A:
 - No need for per/VPN configuration at the ASBRs.

- Still exchange all the VPN routes.

- Requires an inter-AS LSP between the two PEs.
Option C - EBGP redistribution of labeled VPN-IP routes between PEs

- In both option A and option B
 - All VPN routes are exchanged.
 - The scalability is determined by the amount of VPN routing information.
 - The load on the ASBRs is determined by the amount of VPN information carried.

- Option C - use multi-hop EBGP to distribute the VPN-IP routes between the PEs. The ASBRs exchange the internal routes, not the VPN routes.
Option C

VPN-provider-green (site 2)
VPN-provider-gray (site 1)

AS1
AS2
AS3

CE1 (ASBR1)
PE1 (ASBR2)
PE2 (ASBR3)
CE2 (ASBR4)

R1
PE3

Red site 1
Blue site 1
Red site 2
Blue site 2
The abstraction

EBGP for the **external VPN customer routes**

EBGP family inet-vpn
Option C

Looks like VPN-provider as VPN-customer
- The same routing exchanges will happen.
- Relies on the fact that the next-hop won’t be changed on the E-BGP session.

Differences:
- The two sites are attached to different AS.
- Requires EBGPG instead of I BGP between the customer PEs.
Thank you!

Please send comments to ina@juniper.net