Case Studies in Intra-Domain Routing Instability

Zhang Shu
National Institute of Information and Communications Technology, Japan
NANOG31
San Francisco, 2004/5/25
Overview

- Intra-domain routing instability
- Measurements of intra-domain routing instability
 - WIDE Internet and APAN Tokyo-XP network
- Dealing with intra-domain routing instability
 - Detection and troubleshooting
- Conclusions
Intra-Domain Routing Instability

- Intra-domain routing instability
 - Unexpected routing changes within an IGP routing domain
 - Causes packet loss, increased router load, and wasted bandwidth

- Why focus on intra-domain routing?
 - Compared with inter-domain routing, research on IGP behaviors is still poor
 - Help operators better understand intra-domain routing instability and learn how to deal with it
Measurement Methodology

- Data collection
 - OSPF
 - Tcpdump
Data analysis

• Counting routing changes
 ■ Changes in the content of an LSA
 ■ LSA flush
 ■ Changes in AS-External LSAs were excluded

• Refreshing LSAs were not counted
Case Study 1/2: WIDE Internet

- **WIDE Internet**
 - WIDE Project (http://www.wide.ad.jp)
 - Connects hundreds of academic organizations
 - About 50 routers in the OSPF backbone area

- **Data collected at NARA-NOC**
 - Located in Nara, Japan
 - Both OSPFv2 and OSPFv3 data collected
Measurement of the WIDE Internet Router-LSA

Period: August 2000 – May 2004
Measurement of the WIDE Internet (Cont’d)

Network-LSA

Network-Summary-LSA

ASBR-Summary-LSA

Period: August 2000 – May 2004
Example of a Typical LSA Oscillation

- Relatively frequent changes in short term
 - A router in Fukuoka (WIDE), 5/7/2004, lasted for about 4 hours
- Usually caused by congestion
Example of Serious Oscillation

- Frequent changes in short term
 - An L3 switch, 6/12/03-6/13/03, lasted for about 18 hours
- Observed for several times
 - Most of them were caused by problems of p2p links or misconfiguration of using the same router ID on two routers
Long-Term Changes

- Relatively frequent changes
 - A router in SF, lasted for 5 months (10/23/03-4/1/04)
 - Considered due to a switch problem
Long-Term Changes (Cont’d)

- Slow changes
 - A router in Kyoto, has persisted since this March
- Some of them were caused by interface problems
The Case of OSPFv3

Period: July 2003 – January 2004
Case Study 2/2: APAN Tokyo-XP

- APAN Tokyo-XP network
 - A transit network located in Tokyo
 - Relatively small in scale, with no more than ten routers in the backbone area
Measurement of APAN Tokyo-XP Network (OSPFv2, Router-LSA)

Problem of ATM link
Misconfiguration
Switch problem

Period: August 2003 – May 2004
Causes of Instability

- Identified causes
 - Congestion
 - DDoS
 - Link failure
 - Software/Hardware bug
 - Misconfiguration

- Most instability is due to other reasons rather than routing protocol problems
Analysis Results

- Observed Routing Instability
 - Instability observed on both the WIDE Internet and the APAN Tokyo-XP network
 - The most typical changes are relatively frequent short-term ones
 - Happen at intervals of 10 - 200s
 - Frequent short-term changes
 - Long-term changes
Analysis Results (Cont’d)

- Changes is decreasing
 - The change in router’s implementation
 - Less network congestion because of the increased bandwidth in recent years

- The causes of many changes are unknown
Rtanaly: A Tool to Detect and Visualize Intra-Domain Routing Instability

- Functions
 - Detection of IGP change in real-time and alert operators
 - Can also be used for offline data analysis
 - Visualization
 - Accessible through the WWW interface

- Currently only supports OSPF
 - IS-IS support will be completed soon
Troubleshooting Routing Instability

- **Why is routing instability troubleshooting difficult?**
 - Problems occur intermittently, so it is difficult to get useful data for troubleshooting

- **Event-driven data collection**
 - Automatically obtain data for troubleshooting when detecting routing changes
Troubleshooting Routing Instability (Cont’d)

- Data that should be collected
 - Traffic volume
 - Interface status
 - Information on the routing protocols

- From where?
 - The router that originated the changing LSA
 - Network equipment connected to the router
 - Switch

- How to collect the data?
 - SNMP
Conclusions

- Routing instability measurements
 - Intra-domain routing instability can occur frequently and persistently
 - Similar phenomenon may occur on other networks
 - It is important to deploy a monitoring system on your own network

- Rtanaly

- Troubleshooting
 - Event-driven data collection
Acknowledgements

- My thanks to
 - WIDE Project and Nara Institute of Science and Technology
 - Operators of APAN Tokyo-XP network
 - Prof. Youki Kadobayashi for the idea on troubleshooting
Intra-domain routing stability measurement project

- http://pe0.koganei.wide.ad.jp/rtanaly

Please contact us if you are interested in conducting an IGP measurement on your network

- zhang@koganei.wide.ad.jp

Thank you!