Advanced Traffic Analysis Techniques for Peering Networks, Utilizing Netflow.

Richard A Steenbergen <ras@nlayer.net> nLayer Communications, Inc.
Nathan Patrick <nathan@sonic.net> Sonic.net, Inc.
Why you need to know about your traffic

• To decide if you should peer with a new network.
• To convince other networks to peer with you.
• To manage traffic engineering to other networks.
• To defend your network against depeering actions.
• To make intelligent transit purchasing decisions.
 • Maximize your peering strategies.
 • Pick providers who are best for your specific traffic.
How to study your traffic? Netflow of course.

- Hopefully everyone has used or heard about Netflow, but just in case you’ve been in a coma:
 - Netflow is a simple framework for exporting summarized information about the packets being routed through your network.
 - Periodically this data is exported to a collection host via UDP.
 - External tools can parse these flow records for statistical analysis.
So what is wrong with existing Netflow?

- Netflow exports are good at telling you about the current state of the network.
 - Where packets are going now.
 - Some simple information about origin-AS or peer-AS.
- To be effective for peering strategy, you must expand on this information and become predictive.
- The ultimate question is not where **DO** you route your traffic, it is where **CAN** you route your traffic.
Ok already, tell us the new techniques

- Start by throwing out (almost) all information from the flow export except the destination address and the total octet count.
- Build your own virtual RIB(s) using externally collected routing information.
 - Prefixes and AS-PATHs from a given point of view.
- Almost all further analysis is just a matter of changing the RIBs or the AS-PATH position.
A word about why this works: Multihoming.

- Multihoming is pervasive at the core. Even if you don’t multihome, your Tier 2 transit provider probably does.
- Empirical evidence suggests that the average Tier 1 has less than 10% of its customer base single-homed.
 - Or: 90% of the customers you can reach through someone else.
- BGP obscures alternate paths with every hop and every best-path decision. Once this data is gone, there is no way to get it back.
 - The only solution is to look at routes from different views.
Application: Predicting traffic to a new peer.

- Collect the peer’s customer routes via OOB.
 - 111.2.0.0/16 1234 7183 7164 2616 143
 - 111.3.0.0/16 1234 7183 3834 818 82
 - 111.80.0.0/17 1234 829 817 646 7173
 - etc
- Set $n = 1$ (examine the first AS in the PATH)
- Project traffic onto this RIB, counting bits that would hit the AS at position n.
- You now know about your total traffic to ALL of a potential peer’s customer routes.
- You can expand on this by examining the Netflow nexthop or Peer AS to determine where you send the traffic today.
Application: The art of persuasive peering.

- Some networks are aggressively open peering (“Peerleaders”), other networks take a little convincing.
- Often times, they just don’t have the right data.
 - Billion dollar networks aren’t necessarily any better off when it comes to understanding their traffic.
 - Inbound traffic is much harder to predict than outbound. The outbound network may have insights that the receiver of the traffic simply doesn’t.
 - Who needs hard data when you have ideology and company Kool-Aid?
- Having “proof” to back up your claims is a good way to get noticed out of a crowd of folks with Linux routers and a “Global” “Fully Redundant” “OC-192” 0-Commit $500 MPLS “Backbone”.
Application: Donut Peering

- Some networks just won’t peer with you, no matter how much technical or financial sense it makes.
- If you can’t work with them, try working around them.
Application: Donut Peering

- As always, you have several options:
 - Try to peer with their customers.
 - Try to sell to their customers.
 - Try to find their customers’ customers.
- Obtain a RIB for the Peer in question:
 - $n = 1$ yields total traffic.
 - $n = 2$ yields traffic to their specific customers.
 - If necessary, obtain a RIB for the specific customers. Remember, Customer may have more routes!
Application: Picking your Transit Providers

• How do you pick your transit providers? A good price and a smooth sales pitch, or based on hard data?
• The same analysis works on a provider’s RIB too:
 • By understanding where a particular transit provider sends your traffic, you can better understand their routing policies and which networks may need special attention.
 • Try our new transit providers virtually, before you buy.
 • Pick transit providers who support your peering strategy. It may make sense to buy transit from someone who doesn’t already send traffic to your potential peers.
Examples: Sprint (AS1239) (or: Show me some pretty pictures already)

- Just how much can an average network Donut?
- Let’s look at this graph showing traffic to Sprint:
Examples: TeliaSonera (AS1299)

- Thanks to Peter Cohen for being a willing victim.
- A simple traffic graph from a medium-sized NSP:

![Netflow Statistics](image)

- What this says:
 - Out of all of the customer routes of AS1299, this network already peers out 3 Gbps, but sends 1 Gbps to their transit(s).
Examples: TeliaSonera (AS1299)

- An analysis of where they send those 4 Gbps:
Examples: TeliaSonera (AS1299)

- An analysis of where their transit providers send that previously mentioned 1 Gbps:

Traffic Analysis - Telia Route Transit Destinations - 1045.4 Mbps Total

- AS1299 (Telia) 186.9 Mbps (17.88%)
- AS701 (UUNet) 131.1 Mbps (12.54%)
- AS1239 (Sprint) 125.1 Mbps (11.97%)
- AS3320 (DTAG) 90.5 Mbps (8.86%)
- AS5511 (OpenTransit) 227.5 Mbps (21.76%)
- Other Customers 222.8 Mbps (21.31%)
- Other Peers 61.6 Mbps (5.89%)
Conclusion: TeliaSonera (AS1299)

- AS1299 carries only 187 Mbps (or 4.88%) of the potential 4 Gbps of traffic sent by the example network.
- The rest of the traffic bypasses them completely
 - Goes directly to their multihomed customers, or
 - Worse still, goes to their competitors.
 - Either way, this is traffic they will never be able to bill for.

- By looking at the next AS hop, we have a list of their customers, and how much traffic is sent to each.
 - Convincing: Telia can calculate additional revenue from peering.
 - Peering/Poaching: You now have a list of the customers you send the most traffic to. If you can peer around them, Telia may become irrelevant to you.
Flaws in the system (or: You knew it wasn’t going to be this easy!)

- So far we’ve only talked about outbound traffic
 - That’s because inbound is far more difficult to predict.
 - Remember that the outbound network is in complete control, and your inbound is someone else’s outbound.

- Gathering RIBs is hard work.
 - No existing route-servers collect “peer views”.
 - Many networks consider this proprietary information.
 - A large percentage of the data can come from public looking glasses.

- Traffic will shift as AS-PATH lengths change.
- You won’t accept every prefix of a potential peer, and simulated best path calculations are too difficult to predict in a complex network.
Ok now give me a tool that does this stuff

- http://asflow.sourceforge.net
- A simple tool for text-only version, available in two flavors:
 - Perl
 - Pros: Incredibly simple, uses existing flowtools data captures.
 - Cons: Slow and consumes a lot of memory. Intended for quick use against existing “5 minute sample” captures.
 - C
 - Pros: Much better memory usage and run-time CPU usage.
 - Cons: Much more complex, designed for long-term use.
Other resources

- Packet Clearing House peer views for RIBs
 - http://lg.pch.net
 - http://www.pch.net/resources/data/routing-tables/archive/
- Other looking glass views
 - http://www.traceroute.org
 - http://www.bgp4.net
Send questions, complaints, threats, etc. to:

Richard A Steenbergen <ras@nlayer.net>
Nathan Patrick <nathan@sonic.net>