Authentication for TCP-based Routing and Management Protocols

Ron Bonica
Andrew Lange
Sriram Viswanathan
Brian Weis
Motivation

- Many operators do not authenticate TCP based routing protocols
 - BGP, LDP
- Current BCP (RFC 2385) does not fulfill operator requirement
Concerns Regarding RFC 2385

- CPU utilization
 - Not so much of an issue for Juniper, Cisco, Alcatel
 - Juniper, Cisco, and Alcatel architectures separates forwarding and control plane hardware

- Key management
 - Keys need to be refreshed periodically
 - Key refresh requires session reset

- Weak cryptography
 - There are many well-know attacks on MD5
Alternative Approaches

- **Application**
 - In the Protocols (BGP, LDP, etc.)
 - TLS

- **Transport**
 - TCP

- **Network**
 - IKE/IPsec
Chosen Approach

- Better TCP-layer authentication
 - Enhanced TCP Authentication Option

- Hitless key rollover
 - Key chains configured on peer systems
 - Time based key roll-over
 - Key Identifier

- Stronger cryptography
 - HMAC-SHA-1-96
 - CMAC-AES-128-96
Enhanced Authentication Option
Key Chain

- Contains a tolerance parameter up to 64 keys
- Each key contains
 - Identifier [0..63]
 - Authentication Algorithm
 - Shared secret
 - Start and end time
Sending System Procedure

- Identify active key candidates
 - Start-time \leq system-time
 - End-time $> \text{system time}$

- If there are no candidates, log event and discard outbound packet

- If there are multiple candidates, select key with most recent start-time for sending
Sending System Procedure (continued)

- Calculate MAC using active key
 - Calculate over TCP pseudo-header, TCP header and TCP payload
 - By default, include TCP options
- Format Enhanced Authentication Option
 - Active key identifier
 - Flags
 - Message Authentication Code (MAC)
 - Authentication Algorithm Identifier
Receiving System Procedure

- Lookup key specified by TCP Option
- Determine whether that key is eligible
 - Start-time \(\leq \) system time - tolerance
 - End-time \(> \) end time + tolerance
- Calculate MAC
- If calculated MAC is equal to received MAC, accept datagram
Authentication Error Procedure

- Discard datagram
- Log
- DO NOT send indication to originator
Configuration Example - Juniper

regress@UI-J6300-1> show configuration protocols bgp
authentication-algorithm hmac-sha-1-96;
authentication-key-chain ibgp;
local-as 65000;
group ibgp {
 type internal;
 neighbor 10.1.1.1;
 neighbor 10.2.2.2;
}
regress@UI-J6300-1> show configuration security authentication-key-chains {
 key-chain ibgp {
 tolerance 200;
 key 1 {
 secret "9O.VeBSe7-ws4Z"; ## SECRET-DATA
 start-time 2006-1-1.00:00:00;
 }
 key 2 {
 secret "$9$1BYIrv-VY2aU"; ## SECRET-DATA
 start-time 2007-1-1.00:00:00;
 }
 }
}

Configuration Example - Alcatel

SR-12:ALA-21>config>router>bgp>group# info
authentication-key keychain ibgp
type internal
neighbor 10.1.1.1
neighbor 10.3.3.3
SR-12:ALA-21>config>system>security# info
keychain “ibgp”
description “ibgp keychain”
direction send-receive
algorithm hmac-sha1-96
tolerance 200
entry 1
 entry 1
 key “Vxg.Wea9xIbBlcXskkP00U”
 begin-time 2006-1-1.00:00:00
entry 2
 key “J/cOv0nfddHI5Ye2TbfuRk”
 begin-time 2007-1-1.00:00:00
Configuration Example – Cisco Systems

Router>config>#
key chain mykeychain
 accept-tolerance 200
 key 1
 key-string Vxg.Wea9xIbBIcXskkP00U
 cryptographic-algorithm HMAC-SHA-1-12
 send-lifetime 00:00:00 june 1 2006 duration 20000
 accept-lifetime 00:00:00 june 1 2006 23:00:00 july 1 2006
 key 2
 key-string J/cOv0nfdmHl5Ye2TbfuRk
 cryptographic-algorithm HMAC-SHA-1-12
 send-lifetime 00:00:00 july 1 2006 12:00:00 october 1 2006
 accept-lifetime 00:00:00 july 1 2006 infinite
Configuration Example – Cisco Systems Contd..

Applying the keychain under neighbor group
Router>config>#
 router bgp 1
 neighbor-group xxx1
 keychain mykeychain

Applying the keychain under session group
Router> config>#
 router bgp 1
 session-group xxx2
 keychain mykeychain

Applying the keychain under neighbor
Router> config>#
 router bgp 1
 neighbor 1.1.1.1
 remote-as 111
 keychain mykeychain