Using Iperf

Jon M. Dugan
<jdugan@es.net>

Energy Sciences Network
Lawrence Berkeley National Laboratory

NANOG 43, Brooklyn, NY
June 1, 2008
Outline

• TCP Measurements
• UDP Measurements
• Useful tricks
Iperf’s notion of clients and servers

Client is the sender

Server is the receiver (discard server)
TCP Measurements

• Measures TCP Achievable Bandwidth
 – Measurement includes the end system
 – Sometimes called “memory-to-memory” tests

• Limits of what we can measure
 – TCP is a largely a black box

• Many things can limit TCP throughput
 – Loss
 – Congestion
 – Buffer Starvation
 – Out of order delivery
Example Iperf TCP Invocation

Server (receiver):
$ iperf -s

Server listening on TCP port 5001
TCP window size: 85.3 KByte (default)

[4] local 10.0.1.5 port 5001 connected with 10.0.1.10 port 60830
[4] 0.0-10.0 sec 1.09 GBytes 933 Mbits/sec
[4] local 10.0.1.5 port 5001 connected with 10.0.1.10 port 60831
[4] 0.0-10.0 sec 1.08 GBytes 931 Mbits/sec

Client (sender):
$ iperf -c 10.0.1.5

Client connecting to 10.0.1.5, TCP port 5001
TCP window size: 129 KByte (default)

[3] local 10.0.1.10 port 60830 connected with 10.0.1.5 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.2 sec 1.09 GBytes 913 Mbits/sec
Bandwidth Delay Product

• The amount of “in flight” data allowed for a TCP connection

• BDP = bandwidth * round trip time

• Example: 1Gb/s cross country, ~100ms

 \[1,000,000,000 \text{ b/s} \times 0.1 \text{ s} = 100,000,000 \text{ bits}\]

 \[100,000,000 / 8 = 12,500,000 \text{ bytes}\]

 \[12,500,000 \text{ bytes} / (1024 \times 1024) \approx 12\text{MB}\]

• To get full TCP performance the TCP window needs to be large enough to accommodate the Bandwidth Delay Product
UDP Measurements

• UDP provides greater transparency

• We can directly measure some additional things:
 – Loss
 – Jitter
 – Out of order delivery
Example Iperf UDP Invocation

Server (receiver):
$ iperf -u -s

Server listening on UDP port 5001
Receiving 1470 byte datagrams
UDP buffer size: 107 KByte (default)

[3] local 10.0.1.5 port 5001 connected with 10.0.1.10 port 65299
[3] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec 0.008 ms 0/ 893 (0%)

Client (sender):
$ iperf -u -c 10.0.1.5 -b 1M

Client connecting to 10.0.1.5, UDP port 5001
Sending 1470 byte datagrams
UDP buffer size: 9.00 KByte (default)

[3] local 10.0.1.10 port 65300 connected with 10.0.1.5 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec
[3] Server Report:
[3] 0.0-10.0 sec 1.25 MBytes 1.05 Mbits/sec 0.003 ms 0/ 893 (0%)
[3] Sent 893 datagrams
Adjusting Iperf for performance

• The –w option for Iperf can be used to request a particular buffer size. This sets both send and receive buffer size.
 – The OS may need to be tweaked to allow buffers of sufficient size.

• Parallel transfers may help as well, the –P option can be used for this
Useful Iperf Invocations

• UDP and TCP:
 • -i \(n\) report status every \(n\) seconds
 • -d do bidirectional test simultaneously
 • -r do bidirectional test one after another
Using Iperf to generate high rate streams

• UDP doesn’t require a receiver

• If you have good counters on your switches & routers those can be used to measure

• Turns out UDP reception can be very resource intensive resulting in drops at the NIC at high rates (8-9 Gb/s)
Never do this

• Need to generate 10 Gb/s but only have a 1 Gb/s host?

Iperf UDP
1 Gb/s
Destined for
10.1.1.1

Use the –T option to Iperf to control the number of times the traffic loops.
Can also use firewall filters to discard a certain TTL range.
Other filters may be prudent as well.
Iperf Development

• Primarily in maintenance mode
 – Accepting and apply patches
 – Fixing bugs and documentation as time allows

• Future Directions
 – libiperf
More Information

http://iperf.sourceforge.net

iperf-users@lists.sourceforge.net

You can reach me at:
Jon Dugan <jdugan@es.net>