Quality of Service (QoS) Primer

Avinash Tadimalla
Agenda Du Jour

- What is QoS?
- Why is it Required?
- QoS Mechanisms
- QoS Architectures
- QoS Deployment Guide
- Q and A (and C)
What is QoS?

- Quality of Service is an attempt to provide **predictable response** for applications from end-point to end-point by administratively applying different services within the network infrastructure for the applications

 OR

- Quality of Service refers to the capability of a network to provide **better service** to selected network traffic

 OR

- Network provides application with **level of performance** needed for application to function.
What is QoS (contd)

- "Better) performance" as described by a set of parameters or measured by a set of metrics.
- Generic parameters:
 - Bandwidth
 - Delay, Delay-jitter
 - Packet loss rate (or probability)
- Transport/Application-specific parameters:
 - Timeouts
 - Percentage of "important" packets lost
- These parameters can be measured at several granularities:
 - "micro" flow, aggregate flow, population.
- QoS considered "better" if
 - a) more parameters can be specified
 - b) QoS can be specified at a fine-granularity.
What is QoS - Three Perspectives

The user perspective
• Users perceive that their applications are performing properly
 Voice, video, and data

The network manager perspective
• Need to manage bandwidth allocations to deliver the desired application performance
 Control delay, jitter, and packet loss
The Network Perspective

- The definition of a PIPE:
 The path from point A to point B, as perceived by a Packet.
 Similar to your experience in driving from city A to city B!

- QoS is the set of techniques to manage:
 Bandwidth—the perceived width of the Pipe
 Delay—the perceived length of the Pipe
 Jitter—the perceived variation in the length
 Packet Loss—the perceived leak in the Pipe
Agenda Du Jour

- What is QoS?
- **Why is it Required?**
- QoS Mechanisms
- QoS Architectures
- Summary
- Q and A (and C)
“Best Effort” Quality of Service

- Without QoS policies, traffic is served with “best effort”
 - No distinction between high and low priority
 - Business critical vs. background
 - No allowances for different application needs
 - Real-time voice/video vs. bulk data transfer

- No problem, until congestion occurs

IP packets
Congestion without QoS – Example: User Prints to Attached Printer

- Print packets dominate available bandwidth
- Response time slows for all users
Why better-than-best-effort?

- To support a wider range of applications with unpredictable demands
 - Real-time, Multimedia etc
 - Minimize Packet Loss, Delay and Delay Variation/Jitter

- To develop sustainable economic models and new private networking services
 - Current flat priced models, and best-effort services do not cut it for businesses

- Offer Differentiated Services for Profitability:
 - Premium-Class Service (VoIP, Stock Quotes)
 - Business-Class Service (SAP, Oracle, Citrix)
 - Best-Effort Service – (Backups, Email)
QoS Requirements for Voice

- Latency \(\leq 150\) ms
- Jitter \(\leq 30\) ms
- Loss \(\leq 1\)%
- 17-106 kbps guaranteed priority bandwidth per call
- 150 bps (+ layer 2 overhead) guaranteed bandwidth for Voice-Control traffic per call

One-way requirements

- Smooth
- Benign
- Drop Sensitive
- Delay Sensitive
- UDP Priority
QoS Requirements for Video-Conferencing

- Latency ≤ 150 ms
- Jitter ≤ 30 ms
- Loss $\leq 1\%$
- Minimum priority bandwidth guarantee required is:
 - Video-Stream + 20%
 - e.g. a 384 kbps stream would require 460 kbps of priority bandwidth
QoS Requirements for Data

Data

- Smooth/Bursty
- Benign/Greedy
- Drop Insensitive
- Delay Insensitive
- TCP Retransmits

- Different applications have different traffic characteristics
- Different versions of the same application can have different traffic characteristics
- Classify Data into relative-priority model with no more than four classes:
 - Gold: Mission-Critical Apps
 - ERP Apps, Transactions
 - Silver: Guaranteed-Bandwidth
 - Intranet, Messaging
 - Bronze: Best-Effort
 - Internet, Email
 - Less-Than-Best-Effort: Scavenger
 - FTP, Backups, Napster/Kazaa
Why is QoS required - Recap

- Some congestion is likely in most networks
- Over-provisioning is NOT the solution
- Provides the ability to control transmission quality of the network under congestion
- Transmission quality
 - Latency
 - Throughput
 - Jitter
 - Packet Loss
- Different applications are sensitive to different characteristics
- Always good to carry an “insurance” policy
Agenda Du Jour

- What is QoS?
- Why is it Required?
- QoS Mechanisms
- QoS Architectures
- QoS Deployment Guide
- Q and A (and C)
The Building Blocks

- a) Specification of premium services
 (service/service level agreement design)

- b) How much resources to set aside?
 (admission control/provisioning)

- c) How to ensure network resource utilization, do load balancing, flexibly manage traffic aggregates and paths?
 (QoS routing, traffic engineering)

- d) How to actually set aside these resources in a distributed manner?
 (signaling, provisioning, policy)

- e) How to deliver the service when the traffic actually comes in (claim/police resources)?
 (traffic shaping, classification, scheduling)

- f) How to monitor quality, account and price these services?
 (network mgmt, accounting, billing, pricing)
The Big Picture – Control vs. Data Planes

Control Plane: Signaling + Admission Control or SLA (Contracting) + Provisioning/Traffic Engineering

Data Plane: Traffic conditioning (shaping, policing, marking etc) + Traffic Classification + Scheduling, Buffer management
QoS Mechanisms - Classification

- What is Classification
 The most fundamental component of QOS
 Classification is the process of identifying traffic and categorizing it into different classes.
 The goal is to identify packets in order to match them to their QoS requirements

- Classification Tools
 Access Lists: layers 2-4 classification engine
 Protocol Based (NBAR): layer 5-7 classification engine

- Enforce a Trust Boundary
 Classification and Trust Boundaries as close to the edge as possible
Identifying Traffic - Layer 2 and 3

First 3 MSBs define the IP Precedence or Type of Service (DiffServ May Use Six D.S. Bits Plus Two for Flow Control)

DSCP

Unused Bits; Flow Control for DSCP
Network-Based Application Recognition (NBAR)

- IP packet classifier capable of classifying applications that have:
 - Statically assigned TCP and UDP port numbers
 - Non-TCP and non-UDP IP protocols
 - Dynamically assigned TCP and UDP port numbers during connection establishment
 - Classification based on deep packet inspection—NBAR’s ability to look deeper into the packet to identify applications

- Currently supports over 100 protocols/applications
NBAR User-Defined Custom Application Classification

Example

```
ip nbar custom my_protocol
  8 ascii Moonbeam tcp
  range 2000 2999

class-map custom_protocol
match protocol my_protocol
policy-map my_policy
  class custom_protocol
    set ip dscp AF21

interface <>
service-policy output my_policy
```
QoS Mechanisms - Marking

- What is Marking

 The QOS component that "colors" a packet (frame) so it can be identified and distinguished from other packets (frames) in QOS treatment

 Once the packet is classified into a specific service class, marking the packet header allows the core networking elements to apply the appropriate QoS technologies to the packet in an efficient manner

- Marking Tools

 Class of Service (ISL, 802.1p)
 IP Precedence
 DSCP
 PHB
Marking Techniques

- There exist multiple packet marking techniques including:
 - **Layer 3:** IPv4 IP Precedence Field
 - IPv4 DiffServ Differentiated Services Field
 - IPv6 DiffServ Differentiated Services Field
 - **Layer 2:** MPLS Exp/CoS Field
 - 802.1d (802.1p+q) User Priority Field
 - ISL User Priority Field

- **Layer 2 versus Layer 3 Marking**
 - Layer 2 Ethernet Class of Service (CoS) settings (802.1q Header)
 - Three bits allow for 7 levels of classification
 - These levels directly correspond to IPv4 ToS values
 - However, Layer 3 marking is more ubiquitous (Why?)
IP Precedence and DiffServ Code Points

IPv4: Three Most Significant Bits of ToS byte are called IP Precedence (IPP); other bits unused

DiffServ: Six Most Significant Bits of ToS byte are called DiffServ Code Point (DSCP); remaining two bits used for flow control

DSCP is backward-compatible with IP Precedence; an instance of DSCP is a Per Hop Behavior (PHB)
QoS Mechanisms - Congestion

- What is Congestion
 When the offered load exceeds the capacity of a data communication path, the resulting situation is called Congestion.
 Congestion can occur at any point in the network where there are speed mismatches or link aggregations

- Congestion Tools
 Congestion Management: is done by queuing packets
 Congestion Avoidance: is done by dropping packets
The Impact of Congestion

- Packet queues at links start to grow…
- Packets start dropping
- Sources start re-transmitting
- After a while only re-transmissions occupy the network
- Network resources start getting utilized in useless work (packets in queues that get timed out and re-transmitted)
- “Goodput” goes to nearly zero

Max capacity

Congestion controls try to avoid getting into this situation
Congestion Management

- Is done by Queuing
- Queuing algorithms manage the front (scheduling) of a queue
- These algorithms control
 - the order in which the packets are sent
 - the usage of the router’s buffer space

Queuing Algorithms:

- First In First Out (FIFO)
- Priority Queuing (PQ)
- Custom Queuing (CQ)
- Weighted Fair Queuing (WFQ)
- Class-Based WFQ (CBWFQ)
- PQ-CBWFQ (LLQ)
- PQ-WFQ (IP RTP Priority)

Legacy Congestion management

Latest Congestion management
Congestion Management – Graphical View

- Buffers packets when interface is congested
- Schedules packets out of the buffer onto the link (Algorithms: FIFO, CBQ, etc.)
Queuing Algorithms – Class Based Weighted Fair Queuing (CBWFQ)

- Combines the capability to guarantee bandwidth (from CQ) with the capability to dynamically ensure fairness to other flows within a class of traffic (from WFQ)
- In WFQ, bandwidth allocations change continuously, as flows are added/ended
- CBWFQ adds a level of administrator control to the WFQ process; administrator can control how packets are classified

BUT

- No latency guarantees
- Human analysis / configuration
Queuing Algorithms – Priority Queuing-WFQ (PQ-WFQ)

- Also known as IP RTP Priority Queuing
- To prioritise Voice traffic (on FR, PPP)
- Create a priority queue (weight=0) + BW limit
- Essentially gives the router two WFQ systems, one for normal traffic and another for voice
- Voice is serviced as strict priority in preference to other non-voice traffic.
- RTP only (range of UDP ports)
Queuing Algorithms – Low Latency Queuing (LLQ)

- Also known as Priority Queuing - CBWFQ
- Provides a single priority queue, like PQ-WFQ
- Guaranteed bandwidth for different traffic classes can be configured
- LLQ Specifies **maximum bandwidth** in Kbps that a flow is assured under congestion as opposed to the minimum bandwidth guaranteed by CBWFQ
- Multiple priority classes are all enqueued in a single priority queue but policed and rate limited individually
- Guarantees Bandwidth and Restrains flow of packets from priority class ensuring non priority packets are not bandwidth starved
Queuing Algorithms – Recap

- Newer queuing algorithms are hybrid combinations of basic queuing algorithms

- IP RTP Priority
 - intermediate solution (until LLQ developed) to assign voice PQ, but without starving data (which received WFQ)

- CBWFQ
 - combination of CQ and WFQ
 - minimum bandwidth guarantees can be made, but also WFQ can take place within classes
 - very efficient algorithm for data applications

- LLQ
 - combination of PQ, CQ and WFQ
 - PQ-like treatment of voice and/or video
 - efficient handling of data traffic with minimum bandwidth guarantees
Congestion Avoidance

- Congestion avoidance mechanisms are complementary to (and dependant on) queuing algorithms.
- Queuing algorithms manage the front of a queue, while congestion avoidance mechanisms manage the tail of the queue.
- Congestion Avoidance Tools
 - Tail Drop
 - RED
 - WRED
The Need for Congestion Avoidance: Active Queue Management (AQM)

- Dropping can occur in the edge or core due to policing or buffer exhaustion
- If a queue fills up, all packets at tail end of queue get dropped—called tail-drop
- Tail-drop results in simultaneous TCP window shrinkage of large number of sessions, resulting in “global synchronization”
- Manage queue lengths by dropping packets when congestion is building up
- Works best with TCP-based applications, as selective dropping of packets causes the TCP windowing mechanisms to 'throttle-back' and adjust the rate of flows to manageable rates.
“Tail drops” occur when the transmit queue fills up and there is no room left for additional packets.

Without any type of congestion avoidance algorithm the higher priority packet (IP Prec 3) gets dropped – bad!
Congestion Avoidance – Random Early Detection (RED)

- The basic RED mechanism is to *randomly* drop packets before the buffer is completely full.
- Depending on the average queue length, the drop probability is calculated.
RED – Functional Description

- When a packet arrives, the following events occur:
 - The average queue size is calculated
 - If the average is less than the minimum queue threshold, the arriving packet is queued
 - If the average is between the minimum queue threshold and the maximum threshold, the packet is either dropped or queued, depending on the packet drop probability
 - If the average queue size is greater than the maximum threshold, the packet is automatically dropped
Define Two Threshold Values

Make Use of Average Queue Length

Case 1: Average Queue Length < Min. Thresh Value

Max thresh

Min thresh

Average queue length

Admit the New Packet
Case 2: Average Queue Length between Min. and Max. Threshold Value

Max thresh \[p \] \[1-p \]

Min thresh

Average queue length

- Admit the New Packet With Probability \(p \)...
- Or Drop the New Packet With Probability \(1-p \)
Advantages of RED

- Goal of congestion avoidance by controlling of average queue length
- The time scale from marking of packet to actual reduction in arriving packets is set appropriately
- Avoidance of global synchronization achieved by
 - **Randomness:** by randomly choosing which packets to drop we do not drop all packets at the same time, hence causing all flows to back off in synchronously
 - **Low-drop rate:** RED begins to drop as soon as min. threshold is exceeded, and the first levels of drops are pretty low so that only a few flows (statistically the more bandwidth demanding flows) will get dropped and obliged to back off.
- The proportion of marked packets in a connection is relative to its bandwidth share
Drawbacks of RED

- Packet loss rate independent of the bandwidth usage (completely random)

- Unfair link sharing can occur:
 - Even a low bandwidth TCP connection observes packet loss which prevents it from using its fair sharing of bandwidth
 - A non-adaptive flow can increase the drop probability of all the other flows by sending at a fast rate
 - The calculation of average queue length for every packet arrival is computationally intensive
Weighted Random Early Detection (WRED)

- WRED combines **RED** with **IP Precedence** to implement multiple service classes
- Each service class has a defined min and max thresholds, and drop rates
- In a congestion situation lower class traffic can be throttled back first before higher class traffic
- RED is applied to all levels of traffic to manage congestion
WRED Attributes for Multiple Service Levels

Two Service Levels are Shown; Up to Six Can Be Defined
QoS Mechanisms - Policing

- Limits traffic flow to a configured bit rate.
- Drops or remarks out-of-profile packets.
QoS Mechanisms - Shaping

- Regulates traffic flow to an average or peak bit rate.
- Commonly used where speed-mismatches exist.
Traffic Policing vs. Shaping

Policing:
- Traffic rate is controlled at a certain level.
- Excess traffic is dropped or buffered.

Shaping:
- Traffic rate is shaped to a contract or policy rate.
- Excess traffic is smoothed over time.

Graphs illustrating the differences between traffic policing and shaping over time.
Traffic Policing vs. Shaping #1

<table>
<thead>
<tr>
<th>Where Applicable</th>
<th>Policing</th>
<th>Shaping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffers Excess</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Smooths Output Rate</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Optional Packet Remarking</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Policing</th>
<th>Shaping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls output rate through drops. Avoids delays due to queuing.</td>
<td>Less likely to drop excess packets. Avoids TCP retransmissions.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disadvantages</th>
<th>Policing</th>
<th>Shaping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drops can lead to TCP retransmits</td>
<td>Queuing adds delay (and jitter)</td>
<td></td>
</tr>
</tbody>
</table>
Traffic Policing vs. Shaping #2

<table>
<thead>
<tr>
<th></th>
<th>Policing</th>
<th>Shaping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Token refresh rate</td>
<td>Continuous based on formula: 1 / CIR</td>
<td>Incremented at the start of a time interval. Requires min # of intervals.</td>
</tr>
<tr>
<td>Token values</td>
<td>Configured in bytes.</td>
<td>Configured in bits per second</td>
</tr>
</tbody>
</table>

- Both shaping and policing use the token bucket metaphor.
- A token bucket has no discard or priority policy.
- Shaping and policing differ in the rate at which tokens are replenished.
Token Bucket Metaphor

- Tokens are put into the bucket at a certain rate.
- Each token is permission for the source to send a certain number of bits into the network.
- To send a packet, the traffic regulator must be able to remove from the bucket a number of tokens equal in representation to the packet size.
- If not enough tokens are in the bucket to send a packet, the packet either waits until the bucket has enough tokens (in the case of a shaper) or the packet is discarded or marked down (in the case of a policer).
- The bucket itself has a specified capacity. If the bucket fills to capacity, newly arriving tokens are discarded and are not available to future packets. Thus, at any time, the largest burst a source can send into the network is roughly proportional to the size of the bucket. A token bucket permits burstiness, but bounds it.
Token Bucket w/ Policing

- Tokens keep pouring into the bucket at a pre-defined average-rate
- If Token available, can transmit a packet
Leaky Bucket With Shaping

- Start with a bucket without tokens.
- Tokens can be added at a bursty rate.
- Tokens are leaked at a specified constant rate.
Putting It All Together - Packet Path

1. Packets coming in

2. Packet carries classification information

3. Policing/Marking

4. Shaping/Queuing

5. Payload/Header Compression

Classification

Optional Pre-queuing operator

Scheduler

queue

Optional Post-queuing operator
Putting it All together – Queue Definition

What controls the output from the queue:
- Min BW guarantee
- Max BW (Shape rate)
- Excess BW (Bandwidth Remaining percent/ratio)
- Priority Level

What controls the depth of the queue:
- Active Queue management (e.g., WRED)
- Tail drop (queue-limit)
Output from the Queue

- Priority – low delay, strict priority queue. Gets to send its data ahead of all others queues with lower priority. Strictly policed to configured rate.

- Min BW guaranteed- the queue is guaranteed the specified BW. Gets to send before Excess BW, but after all levels of Priority traffic.

- Excess BW (BW remaining) – specify how to divide available BW among queues that already sent more than the Min but less than Max.

- Max BW (Shape value) – Shape the traffic. This is the max BW the queue receives.
Link Efficiency Mechanisms: Link-Fragmentation and Interleaving (LFI)

Serialization delay is the finite amount of time required to put frames on a wire.

For links \(\leq 768 \text{ kbps} \) serialization delay is a major factor affecting latency and jitter.

For such slow links, large data packets need to be fragmented and interleaved with smaller, more urgent voice packets.

Benefit: Reduce the Jitter and Latency in Voice Calls

Problem: Large Packets “Freeze Out” Voice

- Serialization delay is the finite amount of time required to put frames on a wire.
- For links \(\leq 768 \text{ kbps} \) serialization delay is a major factor affecting latency and jitter.
- For such slow links, large data packets need to be fragmented and interleaved with smaller, more urgent voice packets.
Link Efficiency Mechanisms: IP RTP Header Compression

- Payload of a VoIP Packet ~ 20 bytes. But IP + UDP + RTP headers ~ 40 bytes (uncompressed)!!
- For links ≤ 768 kbps serialization delay is a major factor affecting latency and jitter
- For such slow links, large data packets need to be fragmented and interleaved with smaller, more urgent voice packets
Agenda Du Jour

- What is QoS?
- Why is it Required?
- QoS Mechanisms
- QoS Architectures
- Summary
- Q and A (and C)
Stateless vs. Stateful QoS Solutions

- **Stateless** solutions – routers maintain no fine-grained state about traffic. Example: DiffServ
 - ↑ scalable, robust
 - ↓ weak services

- **Stateful** solutions – routers maintain per-flow state. Example: IntServ
 - ↑ powerful services
 - guaranteed services + high resource utilization
 - fine grained differentiation
 - protection
 - ↓ much less scalable and robust
Integrated Services (IntServ) (RFCs 2210, 2211, 2212, 2215)

- An architecture for providing QOS guarantees in IP networks for individual application sessions
- Relies on resource reservation, and routers need to maintain state information of allocated resources and respond to new Call setup requests
- Key end-points are the senders and the receivers
- Applications signal their QoS requirements via a signaling protocol to the network
- Every network node along the path must check to see if the reservation request can be met
- Resources are reserved if the service constraints can be met. Reservation times out unless refreshed
- An Error message is sent back to receiver if the constraints cannot be met
Key Components of IntServ

- Specification of what sender is sending: (rate, MTU, etc.)—the TSpec
- Specification of what the receiver needs: (bandwidth, path MTU, etc.)—the RSpec
- Specification of how the signalling is done to the network by the sender and the receiver

A signaling protocol is needed to carry the R-spec and T-spec to the routers where reservation is required; RSVP is the leading candidate for such signaling protocol.
Stateful Solution Complexity

- **Data path**
 - Per-flow classification
 - Per-flow buffer management
 - Per-flow scheduling

- **Control path**
 - install and maintain per-flow state for data and control paths
Stateless vs. Stateful Revisited

- Stateless solutions are more scalable and robust.
- Stateful solutions provide more powerful and flexible services, including guaranteed services and high resource utilization, fine grained differentiation, and protection.
Question

- Can we achieve the best of two worlds, i.e., provide services implemented by stateful networks while maintaining advantages of stateless architectures?

 Yes, in some interesting cases. DPS, CSFQ.

- Can we provide reduced state services, i.e., maintain state only for larger granular flows rather than end-to-end flows?

 Yes: Diff-Serv
Differentiated Services (DiffServ) (RFCs 2474, 2475, 2597, 2598, 2697)

- Intended to address the following difficulties with Intserv and RSVP;
 - **Scalability**: maintaining states by routers in high speed networks is difficult due to the very large number of flows

Flexible Service Models: Intserv has only two classes, want to provide more qualitative service classes; want to provide ‘relative’ service distinction (Platinum, Gold, Silver, …)

Simpler signaling: (than RSVP) many applications and users may only want to specify a more qualitative notion of service
Differentiated Services Architecture (RFC 2274, RFC 2275)

Traffic Classification and Conditioning (TCB)

Per-Hop Behavior (PHB)

Classification/Marking/Policing

Queuing/Dropping
Traffic Conditioning

- It may be desirable to limit traffic injection rate of some class; user declares traffic profile (example, rate and burst size); traffic is metered and shaped if non-conforming
Per-hop Behavior (PHB)

- is the name for interior router data-plane functions
 - Includes scheduling, buff. mgmt, shaping etc

- **Logical spec**: PHB does not specify mechanisms to use to ensure performance behavior
 - Different boxes implement PHBs in different ways which are optimized for each platform
 - As long as it complies with “black box” spec, this is perfectly fine

- **Examples**:
 - Class A gets x% of outgoing link bandwidth over time intervals of a specified length
 - Class A packets leave first before packets from class B
Per-Hop Behavior (contd.)

- **Expedited Forwarding (EF)**
 - Building block for low delay/jitter/loss
 - Served at a certain rate with short/empty queues

- **Assured Forwarding (AF)**
 - High probability of delivery if profile is not exceeded
 - Four classes and three levels of drop precedence
 - Specific resources (BW, buffer space) allocated to each class at each node

- **Best Effort (BE)**
IntServ/DiffServ Integration

CBWFQ Performs Classification, Policing and Scheduling
RSVP Installed on Interface
RSVP Installed Only to Do Admission Control
Core Routers Operate in a DiffServ Domain
RSVP Installed on Interface

IntServ DiffServ IntServ
QUIZ TIME !!!!!

Which of the scenarios to the left would benefit most from implementing QoS? Explain
Agenda Du Jour

- What is QoS?
- Why is it Required?
- QoS Mechanisms
- QoS Architectures
- **QoS Deployment Guide**
- Q and A (and C)
Five Steps to a Successful QoS Deployment

- **Step 1: Identify and Classify Applications**
 - Mission-critical apps
 - Application properties and quality requirements

- **Step 2: Define QoS Policies**
 - Network topology, bottleneck/non-bottleneck links
 - Trusted and untrusted boundary settings

- **Step 3: Test QoS Policies**
 - Baseline and Benchmarking

- **Step 4: Implement Policies**
 - Classify and mark close to the edge
 - Work towards the core in a phased manner

- **Step 5: Monitor and Adjust**
Modular QoS CLI

- MQC provides a separation between classification and features
- Platform independent way to configure QoS on cisco platforms.
- Helps in defining a QoS behavioral model. For e.g.
 - Imposing maximum transmission rate for a class of traffic
 - Guaranteeing minimum rate for a class of traffic
 - Giving low latency to a class of traffic
Hierarchical Policies

- Support for further granularity. For e.g., police aggregate tcp traffic to 10Mb/s but simultaneously police aggregate ftp traffic to 1Mb/s and http traffic to 3Mb/s

```
class-map tcp-police
  match protocol tcp
class-map ftp
  match protocol ftp
policy-map ftp-police
  class ftp
    police <bps> ...
policy-map hierarchical-police
  class tcp-police
    police <bps> ...
  service-policy ftp-police
```
Configuration example

class-map match-all/match-any <name>
machine <filter>

policy-map <name>
class <class-name>
<feature>

Interface <interface-name>
 service-policy input/output <policy-name>

As an example:

Class-map match-all precedence2
 match ip precedence 2

Policy-map policy-1
 class precedence2
 set ip precedence 4

Interface Ethernet0/1
 service-policy output policy-1
Remember the Five?

- Identify and Classify Applications
- Construct a QoS Policy (Queuing, Dropping, Signaling, etc.)
- Test the QoS Policy (Lab, Portion of Network)
- Adjust and Implement a QoS Policy
- Monitor Key Network Hotspots!

Management Tasks
Class-Based QoS MIB (CBQoSMIB)

- Primary accounting mechanism for MQC-based QoS
- Statistics for active MQC configurations on a per-policy/per-class, per-interface or PVC basis
- Monitor pre-and post-policy bit rates

 For example, “How many packets are being dropped or marked?”
- Read access only, no SNMP configuration
Cisco NBAR Protocol Discovery MIB

- Read/Write SNMP MIB support
- Real-time statistics on applications
- Per-interface, per-application, bi-directional (input and output) statistics
 - Bit rate (bps), Packet counts and Byte counts
- Top-N application views
- Application threshold settings
router# sh run int fa6/0
! interface FastEthernet0/0
 ip address 10.0.147.3 255.255.255.0
 ip nbar protocol-discovery
end

Router# show ip nbar protocol-discovery interface FastEthernet 6/0

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Input Packet Count</th>
<th>Input Byte Count</th>
<th>5 minute bit rate (bps)</th>
<th>Output Packet Count</th>
<th>Output Byte Count</th>
<th>5 minute bit rate (bps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>http</td>
<td>316773</td>
<td>26340105</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>26340105</td>
<td>3000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3000</td>
<td>4137</td>
<td>339213</td>
<td>7367</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ftp</td>
<td>2301891</td>
<td>3000</td>
<td>14644</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3000</td>
<td>279538</td>
<td>673624</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>319106191</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>snmp</td>
<td>8979</td>
<td>906550</td>
<td>7714</td>
<td>694260</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>906550</td>
<td>0</td>
<td>694260</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ftp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17203819</td>
<td>19161397327</td>
<td>151684936</td>
<td>50967034611</td>
<td>6620000</td>
<td></td>
</tr>
</tbody>
</table>
Cisco NBAR Protocol
Discovery Thresholds and Traps

- User can set thresholds on individual protocols on an interface, or on a statistic regardless of protocol

 Multiple thresholds for any combination of supported protocols/and or all protocols

- Configurable statistic types

 Interface in, out and sum of bytes, packets, and bit rate

- If the threshold is breached, the information is stored for prolonged period of time

- A notification (trap) is generated and sent to the user with a summary of threshold information
CASE STUDY
Enterprise Network with IP Services: The WAN

- SP sells L3 services with following four levels of service
 - Real-Time
 - Business High
 - Business Low
 - Best Effort

- Business driver for Enterprise—ad-hoc any to any video conferencing from more than 60 sites across the US
 - Each site connected via T1 connection at minimum
 - VC units run standard 384Kbps IPVC streams

- Customer also has several mission critical business applications that need prioritization

- Managed CE environment
Enterprise Network with IP Services: Challenges

- Point-to-cloud model—SP is involved in QoS
- Challenges

 Current provisioning mechanism guaranteed more than 150% of available bandwidth

 No accounting for routing protocols and L2 overhead

 SP not preserving DSCP marking across their cloud—Remark DSCP to indicate to themselves whether packets are within or violating contract

 DLSW+ application configured to set its ToS value to 5 by default (same as IPVC)
Enterprise Network with IP Services: the Solution

- Customer purchased services in the ratio 5:6:2:1
- Customer migrated to a complete DSCP model
 - Simpler from a classification and provisioning perspective
 - Monitoring and management advantages
- Workaround for SP remarking: NBAR deployed at WAN edge to re-classify and re-mark INBOUND traffic from the WAN
- Routing and control traffic in business high class
- Percentage based provisioning mechanism
- QoS Policy Manager (QPM) for monitoring traffic statistics via CBQoS MIB
Enterprise Network with IP Services: Configuration

class-map match-all VIDEO
match access-group 120

class-map match-all SAP
match protocol custom-10

class-map match-all SNA
match protocol dlsw

class-map match-all TELNET
match protocol telnet

class-map match-all NOTES
match protocol notes

class-map match-any WWW
match protocol http
match protocol secure-http

class-map match-all FTP-GRAPHICS
match access-group 105
match protocol ftp

class-map match-all REAL-TIME
match ip dscp ef

class-map match-any BUSINESS-HIGH
match ip dscp af31
match ip dscp af32
match ip dscp af33
match ip dscp cs3

class-map match-any BUSINESS-LOW
match ip dscp af21
match ip dscp af22
match ip dscp af23
policy-map MARKING
 class VIDEO
 set ip dscp ef
 class SAP
 set ip dscp af31
 class SNA
 set ip dscp af32
 class TELNET
 set ip dscp af33
 class NOTES
 set ip dscp af21
 class WWW
 set ip dscp af22
 class FTP-GRAPHICS
 set ip dscp af23
 class SCAVENGER
 set ip dscp cs1
 class class-default
 set ip dscp default

policy-map WAN-EDGE
 class REAL-TIME
 priority 512
 class BUSINESS-HIGH
 bandwidth percent 45
 random-detect dscp-based
 class BUSINESS-LOW
 bandwidth percent 15
 random-detect dscp-based
 class SCAVENGER
 bandwidth percent 1
 class class-default
 fair-queue
 random-detect dscp-based
Enterprise Network with IP Services: Configuration (Cont.)

interface FastEthernet0/0
 service-policy input MARKING
!
interface Serial0/0
 encapsulation frame-relay IETF
 frame-relay traffic-shaping
!
interface Serial0/0.1 point-to-point
description SP Ckt
 frame-relay interface-dlci 101
class FRTS
!
map-class frame-relay FRTS
 frame-relay cir 1536000
 frame-relay bc 15360
 frame-relay mincir 1536000
service-policy input MARKING
service-policy output WAN-EDGE
Deployment Guide: Cheat Sheet

- Aggregation and speed transition links are potential choke points
- Buffer management, marking and policing in the campus, access and distribution layers
- Protect mission critical applications first
- Single class for latency sensitive traffic, additional traffic classes to implement data SLAs
- Optional class for routing and management traffic
- Less than best effort service for scavenger (P2P, worms) class
- Most other application traffic falls in Best-Effort class
- Queuing and shaping enabled at the egress WAN edge
- Remarketing and policing enabled at the ingress provider edge
- Queuing and WRED dropping enabled in the SP core
How Many More Slides ???

MYTH: This presentation could go on forever!

FACT: It’s over, but there’s a lot more to QoS…(next year, once I learn it first 😊)!!
Backup Slides
Queuing Algorithms - FIFO

- Simplest Queuing Algorithm
- “packets leave in order of arrival”
- Fixed Queue Lengths (default in IOS = 40)
 - Result in dropping from tail of queue under load
- Bursty sources may cause high delay in delivering time-sensitive control/signaling messages
Queuing Algorithms – Priority Queuing (PQ)

- Assigns packets to one of four queues (high/medium/default-normal/low)
- Servicing is always top-down; Higher queues are completely exhausted before lower queues are serviced
- Excellent protection for latency sensitive traffic
- BUT
 - FIFO drawbacks within PQ
 - Starvation between PQ’s
 - Human analysis / configuration
Queuing Algorithms – Custom Queuing (CQ)

- Reserves a portion of the bandwidth of a link for each selected traffic type
- up to 16 queues defined and traffic-share counts are assigned to each queue
- mitigates starvation scenarios by introducing the concept of “guaranteed minimum” bandwidth
- FIFO within CQ, RR between CQ’s
 a) cycle through the series of queues in round-robin order
 b) send the portion of allocated bandwidth for each queue before moving to the next queue
 c) Queuing of packets is still FIFO in nature in each classification

- BUT
 - FIFO drawbacks within PQ
 - Human analysis / configuration
Queuing Algorithms – Weighted Fair Queuing (WFQ)

- An algorithm is a Fair Queuing Algorithm (FQ) iff:
 - it sorts data streams by conversation (flow)
 - data streams that use less of the interface bandwidth are algorithmically guaranteed as much bandwidth as they demand with minimal latency;
 - data streams that use more are algorithmically guaranteed to use approximately the same bandwidth, with potentially increased latency.

- An algorithm is a Weighted Fair Queuing Algorithm (WFQ) iff
 - it is a Fair Queuing algorithm after a per-stream multiplier is applied to the bandwidths of the streams.

- WFQ is similar in some respects to Custom Queuing.
 - The big difference is that it sorts among individual traffic streams without having the user define access lists.
Weighted Fair Queuing - Operation

Traffic Destined for Outbound Interface

Classifies traffic into flows/conversations. Each conversation placed in a different queue

Configurable number of queues (256 max)

Flow-Based Classification by:
- Source and destination address
- Protocol
- Session identifier (port/socket)

Queueing Buffer Resources

Weight Determined by:
- Requested QoS (IP Precedence, RSVP)
- Frame Relay FECN, BECN, DE (For FR Traffic)

Weight = 4096/(IP Prec + 1),
High precedence implies lower weight

Low volume traffic receive preferential service
Ex: 1 flow for each precedence level, 18 precedence 1 flows.
1+2(18)+3+4+5+6+7+8= 70
Prec 0 gets 1/70 of link Bandwidth
Each of Prec 1 flow gets 2/70 of link and so on

Classifies traffic into flows/conversations. Each conversation placed in a different queue
RED – Packet Drop Probability

- The packet drop probability is based on the minimum threshold, maximum threshold, and mark probability denominator.
- The minimum threshold value should be set high enough to maximize the link utilization. If the minimum threshold is too low, packets may be dropped unnecessarily, and the transmission link will not be fully used.
- The difference between the maximum threshold and the minimum threshold should be large enough to avoid global synchronization. If the difference is too small, many packets may be dropped at once, resulting in global synchronization.
- WRED tuning depends upon many factors, including:
 - The offered traffic load and profile
 - The ratio of load to available capacity
 - The behaviour of traffic in the presence of congestion
Weighted Random Early Detection: Explicit Congestion Notification (ECN)

- Some applications prefer not to wait for TCP retransmit timer to expire.
 - Short web transfers and low bandwidth Telnet
- No packet drop
 - Congestion notification signal is sent to end host

DiffServ Code Point (DSCP)

<table>
<thead>
<tr>
<th>Version</th>
<th>Len</th>
<th>ID</th>
<th>Offset</th>
<th>TTL</th>
<th>Proto</th>
<th>FCS</th>
<th>IP SA</th>
<th>IP DA</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 6 5 4 3 2 1 0</td>
<td>DiffServ Code Point (DSCP)</td>
<td>ECT</td>
<td>CE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capability</th>
<th>ECT</th>
<th>CE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non ECN-Capable (ECT, CE)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ECN Capable Endpoints (ECT)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ECP Capable Endpoints (ECT)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Congestion Experienced (ECT, CE)</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Generic Traffic Shaping (GTS)

- **Incoming Packets**
 - **Match**
 - **No Match**
 - **Classify**
 - **Configured Rate**

- **Classification by:** Extended Access List Functionality

- **Token Bucket Shaping**

- **Transmit Queue**

- **Output Line**

- **GTS:** Applied on interface and sub-interface level

- **FRTS:** supported on a per DLCI basis

- **Configured Queuing (e.g. CBWFQ, LLQ, etc.)**
Major Types of AQM - RED (RED Variants)

- **WRED (Weighted-RED)**
 Profiles packet with different probabilities at the same level of congestion

- **ARED (Adaptive-RED)**
 Attempts to maintain suitable operating parameters in RED by dynamically adjusting maxp (max of Pb)

- **DRED (Dynamic-RED)**
 Adjusts the packet drop probability based on the deviation of the queue length

- **SRED (Stabilized-RED)**
 Stabilizes the buffer utilization at a level independent of the load level
Where is WRED used?

- WRED is useful on any output interface where you expect to have congestion.
- WRED is usually used in the core routers of a network, rather than the network's edges.
- Edge routers assign IP precedence to packets as they enter the network.
- WRED uses these precedences to treat different types of traffic.
- When the bulk of your traffic is TCP as opposed to UDP (Why?)
Classification and marking of packets at the edge of the network makes the packets accessible to QoS handling within the network.
Optimized queuing and forwarding in the core of the network (PHB – Per Hop Behavior) allows for fast efficient delivery.
Differentiated Services Code Point (DSCP)

- Packet is marked in the Type of Service (TOS) in IPv4, and Traffic Class in IPv6: renamed as “DS”
- DSCP : Differentiated Service Code Point = 6 bits
- CU: Currently Unused = 2 bits (lined up for ECN)
- DSCP is the field identifying what treatment (PHB) the packet should receive
Design Approach to Enabling QoS

Classification: Mark the packets with a specific priority denoting a requirement for class of service from the network

Trust Boundary: Define and enforce a trust boundary at the network edge

Scheduling: Assign packets to one of multiple queues (based on classification) for expedited treatment throughout the network; use congestion avoidance for data

Provisioning: Accurately calculate the required bandwidth for all applications plus element overhead
QoS Tools Mapped To Design Requirements

Campus Access
- Auxiliary VLANs
- Multiple Queues
- 802.1Q/p
- DSCP
- Fast link convergence
- Strict Priority Queuing

Campus Distribution/Core
- Multiple Queues
 - 802.1Q/p
 - DSCP
 - Strict Priority Queuing

WAN Aggregator
- DSCP
- LLQ
- CBWFQ
- WRED
- LFI/FRF.12
- cRTP
- FRTS, dTS

Branch Router
- DSCP
- NBAR
- 802.1Q/p
- LLQ
- CBWFQ
- WRED
- LFI/FRF.12
- cRTP
- FRTS

Branch Switch
- Auxiliary VLANs
- Multiple Queues
- 802.1Q/p
- Strict Priority Queuing
Queuing: Sample Policy for WAN Bandwidth Allocation

```plaintext
policy-map Multiservice
  class VoIP
    priority percent 15
  class VoIP-Signaling
    bandwidth remaining percent 3
  class video
    bandwidth remaining percent 25
  class Mission-Critical-Data
    bandwidth remaining percent 20
  class Bulk-Data
    bandwidth remaining percent 15
  class Interactive-Data
    bandwidth remaining percent 10
  class Management
    bandwidth remaining percent 15
  class Scavenger
    bandwidth remaining percent 1
  class class-default
    fair-queue
```
Service-Provider Considerations

Maximum One-Way Service-Levels
Latency ≤ 150 ms / Jitter ≤ 30 ms / Loss $\leq 1\%$

Maximum One-Way SP Service-Levels
Latency ≤ 60 ms
Jitter ≤ 20 ms
Loss $\leq 0.5\%$

- Enterprises and SPs must cooperate and be consistent to ensure QoS requirements for AVVID