Prefix Hijacking Mitigation

Something is better than nothing

James Cowie, Renesys
Tom Daly, Dynamic Network Services
Anton Kapela, Voxel
Todd Underwood, Google
Outline

• Introduction to prefix hijacking
• Mitigating against an event
• Experiment
• Questions
Prefix Hijacking 101

• Announce someone else's prefix
• Announce a more specific of a someone else's prefix

• Synopsis: You are trying to “steal” someone else’s traffic by getting it routed to you.
• Capture, sniff, redirect, manipulate traffic as you wish.
Same Prefix: Shorter AS Path Wins

NANOG 46 – June 2009
Same Path: More Specific Prefix Wins

AS 30

AS 10

AS 40

Client

192.168.10/24

192.168.10/25

NANOG 46 – June 2009
Advanced Hijacking: Pilosov/Kapela's MITM Attack

- http://eng.5ninesdata.com/~tkapela
- Create a new path for the hijacked traffic
- Copy/observe/record traffic
- Return it to the rightful originator
- Hide your tracks
- Includes prepending ASes along the return path and TTL modification for traceroute hiding
Impact

• IP space that is in-use: (obvious operational impact)
 • Disrupts traffic, denies service to the traffic
• IP space not in-use (delayed operational impact)
 • Damage to reputation of the target
• *Either way, you may or may not know it is happening!*
Does It Actually Happen?

• Yes!
 • Famously: Youtube:
 http://nanog.org/meetings/nanog43/presentations/Brownyoutube
 • Also, Yahoo, Google, and many, many others

• Not as often as some people think
 • Certainly not a daily or weekly occurrence
 • It may happen (and is worth preparing for it) but is not the biggest threat you face.

• MITM hijacking unlikely so far
Why Doesn't Someone Fix This?

• We try! Sorta:

• Peers don't route-filter each other:
 • http://www.nanog.org/mtg-0510/deleskie.html

• No trust anchors built into the allocation/routing system from the start:
 • Randy Bush asked for one as an Eid present: www.nanog.org/mtg-0602/pdf/bush.pdf
 • Didn't happen 2006, 2007 or 2008

• No way to validate routes in flight:
 • SBGP, soBGP never implemented
Mitigation Overview

• Prepare (most important)
 • Detect
 • Investigate
 • Mitigate (novel suggestion for how)
 • Clean up
Mitigation 0: Prepare

• Ensure prefixes are all provably yours:
 • Gather allocation/SWIP documentation
 • Gather electronic versions of any LOAs from customers

• Register prefixes in IRRs

• Ask providers to accept le /25 and test acceptance and propagation of the /25s in advance

• Ask provider about response procedures to hijackings, DOSes
Mitigation 0: Prepare (cont.)

• Do not put important resources in the same prefixes:
 • Youtube ran DNS in the same prefixes as web/video previously. Limits the scope of damage.
• Providers and peers should be selected on the basis of clue in dealing with this.
• Join security groups, if possible.
• Most importantly: build relationships with as many engineers/managers at major networks as possible. There are the people that are going to help you when this happens to you!
Mitigation 1: Detect (quickly!)

• There are lots of tools that can do this for you. Pick one (or two) and use them.
 – RIPE RIS
 – PHAS
 – BGPMon
 – Renesys
 – Something home grown
Mitigation 1: Detection (How)

- Change in origin ASN
- Change in route propagation through unauthorized / unknown peers
- Origination of a more specific prefix
- Traffic monitoring, etc.
Mitigation 2: Investigate

• Make sure it's a hijacking
• Make sure you understand who is responsible and what routes they are sending to whom
• Gather your evidence carefully
Mitigation 3: Mitigate

- Originate more specifics. Up to those /25s you tested. This *may* help you get your traffic back.
- Contact the “nearest responsible large provider” to the hijack, asking them to route filter.
- Work upstream from yourself and the hijacker, asking for filtering.
- Your RIR/IRR/LOA data may be critical here.
Mitigation 4: Clean Up

• Get attacker to stop announcing prefixes.
• Get attacker’s upstream to properly filter the attacker.
• Stop originating more specifics from your own network.
• Thank everyone who helped, profusely. Buy them beverages. You'll need their help again soon.
Hypothesis

• Can the affects of route flap dampening be used to mitigate a prefix hijacking?
Mitigation: The Flapping

- Novel concept: flap the hijacked more specific
- Assuming:
 - P/23 is the covering prefix originated by ASNA
 - P/24 is originated from hijacker ASNB
- ASNA should originate and then flap P/24
- P/24 should be flap dampened (at least somewhat) and the covering /23 will catch the traffic
Normal State: P/23 originated by ASN A

Hijacked State: P/23 originated by ASN A

Flapped State: P/23 originated by ASN A

NANOG 46 – June 2009
Flapping: An Experiment

• The Players:
 – AS33517: Dynamic Network Services
 • Has 216.146.34.0/23, originates 216.146.34.0/23 and 216.146.35.0/24
 – AS16842: Five Nines Data
 • Hijacking 216.146.34.0/24
 • AS16842 originates 216.146.34.0/24, stealing half of AS33517’s /23.
 • AS33517 responds by announcing the stolen /24.
 • Observe the steady state.
Flapping: An Experiment (2)

• The flapping:
 – AS33517 begins flapping 216.146.34.0/24 in an attempt to suppress the more specific (and get traffic back)
 – Two different geographic sources and rates of flapping were attempted in order to ensure propagation and thresholding did not reduce the effectiveness (NYC and ORD, Quagga and JUNOS)
Flapping: Results/Analysis

• Used BGP update data from Renesys Routing Intelligence and its global peerset.

• Summary: This technique doesn’t work.
 – The rightful owner just becomes a big prefix flapping jerk!
Preliminary Analysis

Percentage of peers selecting:
- hijacked prefix (AS16842-P/24) in blue
- “real” prefix (AS33517-P/24) in yellow
- no prefix – withdrawn – in orange

NANOG 46 – June 2009
Deeper Analysis

• Horizontal lines are individual peers.
• Each circle is an update.
• First slide shows the whole peer tableau, with the “contested zone” on top, and the “closer to the attacker zone” down below (never in play; note the lack of withdrawals/dampening).
• Subsequent slides zero in on the contested zone, where the defender has a chance.
First Trial

Defender responds, basins of attraction identified; steady state

Flapping!
Flapping! Green circles are (rare) withdrawals.

On balance, blue circles (defender) are being turned into red circles (attacker), **not** dampened.

Remember, this is the defender's turf to lose (note steady state).
Conclusion

• The steady-state originator always has the advantage (older route in tables)
• In this case, the defender has all the ground to lose.
• Duplicate originations help get some traffic back.
• Flapping severely hurts the defenders attempt to get traffic back.
Open Questions

• Does anyone still flap dampen?
• Does this work at all?
• How much do you have to flap to keep it working?
• Could this strategy be effective?
• Are we all insane for even thinking it would work?
Thank You

James Cowie, Renesys
Tom Daly, Dynamic Network Services
Anton Kapela, Voxel
Todd Underwood, Google