Which Routing Protocol?

Comparison between OSPF & ISIS

Faraz Shamim
Khalid Raza
Issues and Comparison

- **OSPF top down view**
 - OSPF is for the most part more “optimized” (and therefore significantly more complex)
 - Uses complex, multistate process to synchronize databases between neighbors
 - Intended to minimize transient routing problems by ensuring that a newborn router has nearly complete routing information before it begins carrying traffic
 - Accounts for a significant portion of OSPF’s implementation complexity
 - Partially a side effect of granular database (requires many DBD packets)

- **ISIS top down view**
 - IS-IS was not designed from the start as an IP routing protocol
 - Adjacency is reported once two-way connectivity has been ensured
 - IS-IS essentially uses its regular flooding techniques to synchronize neighbors
 - Coarse database granularity makes this easy (just a few CSNPs)
 - Transient routing issues can be reduced (albeit non deterministically) by judicious use of the “overload” bit
Issues and Comparison

- Encapsulation
 - OSPF runs on top of IP
 - Traditional IP routing protocol approach
 - Allows virtual links (if you like them)
 - Relies on IP fragmentation for large LSAs
 - Subject to spoofing and DoS attacks (use of authentication is strongly advised)

- Encapsulation
 - IS-IS runs directly over L2 (next to IP)
 - Sort of makes sense (ISIS was originally designed for CLNS)
 - Partition repair requires tunneling (rarely implemented)
 - More difficult to spoof or attack
Terminology
Terminology

OSPF:
- Host
- Router
- Link
- Packet
- Designated router (DR)
- Backup DR (BDR)
- Link-state advertisement (LSA)
- Hello packet
- Database Description (DBD)

ISIS:
- End System (ES)
- Intermediate System (IS)
- Circuit
- Protocol Data Unit (PDU)
- Designated IS (DIS)
- N/A (no BDIS is used)
- Link-state PDU (LSP)
- IIH PDU
- Complete Sequence Number PDU (CSNP)
Terminology (cont.)

OSPF:
- LS update
- LS acknowledgement
- Area
- Non-backbone area
- Backbone area
- Area Border Router (ABR)
- Virtual link
- AS Boundary Router (ASBR)
- Router ID
- Link-state ID
- Advertising router ID

ISIS:
- LSP (ISIS runs over layer-2)
- Partial Sequence Number PDU (PSNP)
- Subdomain (area)
- Level-1 area
- Level-2 area
- L1L2 router
- Virtual link (not used though)
- any IS
- System ID
- N/A
- N/A
Packets
Packets

- **OSPF basic header is fixed 20 bytes**

<table>
<thead>
<tr>
<th>Version</th>
<th>Type</th>
<th>Packet Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Common header is only 8 bytes**

<table>
<thead>
<tr>
<th>Intradomain Routing Protocol Discriminator</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length Indicator</td>
<td>1</td>
</tr>
<tr>
<td>Version/Protocol ID Extension</td>
<td>1</td>
</tr>
<tr>
<td>ID Length</td>
<td>1</td>
</tr>
<tr>
<td>Maximum Area Address</td>
<td>1</td>
</tr>
<tr>
<td>Additional Header Fields</td>
<td>1</td>
</tr>
<tr>
<td>TLV Fields</td>
<td>1</td>
</tr>
</tbody>
</table>

| Router ID | | |
|-----------|---|
| Area ID | | |
| Checksum | Autype | |
| Authentication | | |
| Authentication | | |

© 2010 Cisco Systems, Inc. All rights reserved.
Packets

- Packet Encoding
 - OSPF is “efficiently” encoded
 - Positional fields
 - Holy 32-bit alignment provides tidy packet pictures, but not much else
 - Only LSAs are extensible (not Hellos, etc.)
 - Unrecognized LSA types not flooded (though opaque LSAs can suffice, if implemented universally)

- Packet Encoding
 - IS-IS is mostly Type-Length-Value encoded
 - No particular alignment
 - Extensible from the start (unknown types ignored but still flooded)
 - All packet types are extensible
 - Nested TLVs provide structure for more granular extension (though base spec does not use them; OSPF is starting to do so)
Packets

OSPF

- 5 type of basic packets
 1. Hello
 2. DBD
 3. LS Request
 4. LS Request
 5. Link State Ack

ISIS

- 3 types of basic packets granularity within
 1. Hello (3 types L1 LAN, L2 LAN, Point-to-point)
 2. Link state packet (L1,L2)
 3. Sequence number packet (CSNP, PSNP)
Hello

OSPF:

- Fixed format
- Sent every 10 sec by default.
- Intelligent sending on NBMA
- Suppressed for demand circuits

ISIS:

- TLVs (extendable)
- Sent every 10 secs by default
- DIS sends 3 times faster
OSPF LSAs

<table>
<thead>
<tr>
<th>Type</th>
<th>LSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Router</td>
</tr>
<tr>
<td>2</td>
<td>Network</td>
</tr>
<tr>
<td>3</td>
<td>Summary Network</td>
</tr>
<tr>
<td>4</td>
<td>Summary ASBR</td>
</tr>
<tr>
<td>5</td>
<td>External</td>
</tr>
<tr>
<td>6</td>
<td>Group Membership</td>
</tr>
<tr>
<td>7</td>
<td>NSSA</td>
</tr>
<tr>
<td>8</td>
<td>External Attributes</td>
</tr>
<tr>
<td>9–11</td>
<td>Opaque</td>
</tr>
</tbody>
</table>

ISIS LSPs

- Up to 256 LSPs per IS
- Each LSP is constructed with TLVs:

<table>
<thead>
<tr>
<th>TLV</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Neighbor announcement</td>
</tr>
<tr>
<td>10</td>
<td>Authentication</td>
</tr>
<tr>
<td>22</td>
<td>Extended neighbor info(TE)</td>
</tr>
<tr>
<td>128</td>
<td>Internal IP Routing info</td>
</tr>
<tr>
<td>129</td>
<td>NLPID announcement (IP)</td>
</tr>
<tr>
<td>130</td>
<td>External IP Routing info</td>
</tr>
<tr>
<td>132</td>
<td>IP Interface addresses</td>
</tr>
<tr>
<td>135</td>
<td>Wide scale metrics</td>
</tr>
</tbody>
</table>
Adjacency Establishment

OSPF:
- LSDB synchronization is performed before a neighbor is reported in the router-LSA
- On point-to-point links adjacencies are established between every pair of neighbors that can see each other
- On LAN segments adjacencies are established with the DR and BDR
- MTU mismatch is detected

ISIS:
- Adjacency is reported once two-way connectivity has been ensured
- Point-to-point links are treated the same way as in OSPF
- On LAN segments, adjacencies are established with the DIS (no BDIS is elected)
- MTU mismatch is detected
Database Granularity

- OSPF database node is an LSAdvertisement
 - LSAs are mostly numerous and small (one external per LSA, one summary per LSA)
 - Network and Router LSAs can become large
 - LSAs grouped into LSUpdates during flooding
 - LSUpdates are built individually at each hop
 - Small changes can yield small packets (but Router, Network LSAs can be large)

- IS-IS database node is an LSPacket
 - LSPs are clumps of topology information organized by the originating router
 - Always flooded intact, unchanged across all flooding hops (so LSP MTU is an architectural constant--it must fit across all links)
 - Small topology changes always yield entire LSPs (though packet size turns out to be much less of an issue than packet count)
 - Implementations can attempt clever packing
Designated Routers

- Both protocols elect a designated router on multiaccess networks to remove $O(N^2)$ link problem (by creating a pseudonode) and to reduce flooding traffic (DR ensures flooding reliability)

- OSPF elects both a DR and a Backup DR, each of which becomes adjacent with all other routers
 - BDR takes over if DR fails
 - DRship is sticky, not deterministic
 - Complex algorithm

- In IS-IS all routers are adjacent (but adjacency is far less stateful)
 - If DR dies, new DR must be elected, with short connectivity loss (synchronization is fast)
 - DRship is deterministic (highest priority, highest MAC address always wins)
 - DRship can be made sticky by cool priority hack (DR increases its DR priority)
DR Election

OSPF:
- Every LAN interface goes through the Waiting state to listen if the DR and BDR are already elected, if so, the new router does not try to pre-empt.
- DR/BDR re-election happens only when current DR/BDR goes down (stability).

ISIS:
- Interfaces also go through a delay (3 seconds), but this is just an attempt to collect as much info for DR election as possible.
- New router attached to a segment may cause DR switch-over.
LAN Flooding

- OSPF uses multicast send, unicast ack from DR
 - Reduces flood traffic by 50% (uninteresting)
 - Requires per-neighbor state (for retransmissions)
 - Interesting (but complex) acknowledgement suppression
 - Flood traffic grows as O(N)

- IS-IS uses multicast LSP from all routers, CSNP from DR
 - Periodic CSNPs ensure databases are synced
 - Flood traffic constant regardless of number of neighbors on LAN
Multiple areas

- OSPF router can sit in many areas
- If backbone is attached, it is an ABR and attracts inter-area traffic
- If no backbone is attached, the router is internal to more than one area and does not attract inter-area traffic
- This is Cisco-specific, OSPF standard says “more than one area, you’re an ABR” See RFC 3509 for more details

- Each ISIS router belongs to one area
- In ISIS multi-area has been added - multiple ISIS processes
- One of the processes will be L1L2 to advertise all area addresses from all processes into L2
- Designed to use for CLNS, not for IP
Links and areas

- In OSPF link can be only in one area, and routers must agree on area ID
- Area borders cross routers in OSPF

- In ISIS, if routers do not agree on area ID, they form L2 adjacency
- Area borders cross links in ISIS
- In ISIS, link can be associated with a L1 and a L2 area simultaneously
Area types

- OSPF has ordinary, stub, totally-stub, NSSA (with and without summaries)

- ISIS originally supported areas with no inter-area routes (NSSA, no-summary), now it allows for route leaking (more like NSSA)
Inter-area routing in OSPF

- OSPF has an optimal inter-area routing support---end-to-end metric is calculated

- We can prohibit injection of inter-area routes for stub and NSSA areas by using the “no-summary” keyword on the ABRs

- Inter-area route filtering (CSCdi43518)
Inter-area routing in OSPF (cont.)

- Intra-area routes are announced in type-3 summary-LSAs (possibly aggregated) by ABRs into all attached areas.
- If backbone connection is active, ABRs consider only backbone summaries and re-announce them into non-backbone areas.
- Standard specifies aggregation to be done only when summaries are created based on intra-area routes.
- Inter-area routes can further be aggregated by ABRs when re-announced from the backbone (CSCXXXXX).
Inter-area routing in ISIS

• ISIS did not have it, all areas were totally-stub, but allowed external info to be injected at any place

• Route leaking was added to ISIS to solve the problem--good filtering capability
External routing

- Type-5 LSAs are used to announce external routes by ASBRs, one LSA per one external route
- ABRs announce location of ASBRs in type-4 LSAs
- Only one copy of LSA per domain (type-5’s are flooded throughout the whole domain except for stub and NSSA areas)
- Administrative tags may be set in OSPF when an external route is injected into the OSPF domain
- External routes are differentiated with internal ones
- May be aggregated by the ASBRs, and by NSSA ABRs.

- TLV 130 is used to announce external routing information, several externals share the same LSP fragment
- Every L1L2 router re-announces it to L2 (and back to L1 if route leaking is configured)
- Remote areas have as many copies of a TLV as many L1L2 routers are leaking it from L2 into these areas
- No administrative tags
- External routes look just like internal in the routing table, only L1 and L2 are differentiated
- May be aggregated by any L1L2 router
Number of neighbors

- Both protocols can maintain hundreds of neighbors (whether it’s a good idea is a different question)
- ISIS has been deployed with more neighbors in the field (people didn’t want areas)
Scalability Issues
Scalability Issues

Database Size

- OSPF topologies limited by Network and Router LSA size (max 64KB) to $O(5000)$ links
 - External and Interarea routes are essentially unbounded
- IS-IS topologies limited by LSP count (256 fragments * 1470 bytes) for all route types
- Ultimately a non-issue for even slightly sane topologies
Scalability Issues

- Database Churn
 - Both protocols have time-limited database entries and therefore require refreshing
 - IS-IS lifetime field is 16 bits, giving 18.7-hour lifetimes (with refresh times close to this)
 - OSPF age (counts up) has an architectural lifetime limit of 1 hour (80,000 LSAs yield a refresh every 23 milliseconds)
 - “Do-not-age” LSAs are not backward compatible
 - Don’t inject zillions of routes into your IGP
Scalability Issues

- Flooding load—the only serious issue
 - Full-mesh topologies are worst-case for both
 - N^2 copies of each update (each of which is $O(N)$ in size)
 - Link failure: information
 - Router failure: information
 - IS-IS “mesh group” hack provides backward-compatible way of pruning flooding topology
 - OSPF has interface blocking
OSPF v3
OSPFv3 addressing v2 issues

- Protocol processing per-link, not per-subnet (next slide..)
- Removal of addressing semantics
- Addition of Flooding scope
- Explicit support for multiple instances per link
- Use of IPv6 link-local addresses
- Authentication method changes
- Packet format, LSA’s header format changes
- Handling of unknown LSA types
OSPFv3 addressing v2 issues

- Protocol processing per-link, not per-subnet
 - IPv6 uses the term "link" instead of network or subnet to indicate communication
 - Interfaces connect to links
 - Multiple IPv6 subnets can be assigned to a single link, and two nodes can talk directly over a single link, even if they do not share a common IPv6 subnet
 - Change affects the receiving of OSPF protocol packets, and the contents of Hello Packets and Network-LSAs
OSPFv3 and v2 Similarities

<table>
<thead>
<tr>
<th>packet type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hello</td>
</tr>
<tr>
<td>2</td>
<td>Database Description</td>
</tr>
<tr>
<td>3</td>
<td>Link State Request</td>
</tr>
<tr>
<td>4</td>
<td>Link State Update</td>
</tr>
<tr>
<td>5</td>
<td>Link State Acknowledgment</td>
</tr>
</tbody>
</table>

- OSPFv3 has the same 5 packet type but some fields have been changed.
 - Mechanisms for neighbor discovery and adjacency formation
 - Interface types
 - P2P, P2MP, Broadcast, NBMA, Virtual
 - LSA flooding and aging
 - Nearly identical LSA types
The high-order three bits of LS type {1 bit (U) for handling unrecognized LSA and two bits (S2, S1) for flooding scope} encode generic properties of the LSA, while the remainder, (called LSA function code) indicate the LSA's specific functionality

- OSPFv2 had two flooding scope, AS wide and area wide. OSPFv3 has three flooding scope:
 - **AS scope**, LSA is flooded throughout the AS
 - **Area scope**, LSA is flooded only within an area
 - **Link-local scope**, LSA is flooded only on the local link.
OSPFv3 Flooding Scope

- U (unrecognized) bit is used to indicate a router how to handle an LSA if it is unrecognized.

<table>
<thead>
<tr>
<th>U-bit</th>
<th>LSA Handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Treat this LSA as if it has link-local Scope</td>
</tr>
<tr>
<td>1</td>
<td>Store and flood this LSA as if type understood</td>
</tr>
</tbody>
</table>

- S2 / S1 bit indicates the three flooding scopes.

<table>
<thead>
<tr>
<th>S2</th>
<th>S1</th>
<th>Flooding scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Link-Local flooding scope</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Area flooding scope</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>AS flooding scope</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Reserved</td>
</tr>
</tbody>
</table>
ISIS extension
IPv6 New TLV’s

- IPv6 Reachability TLV 236
 - Defines both IPv6 Internal and External reachability information
 - Metric is still 32 bits
 - U: Up/Down
 - X: External origin bit
 - S: Sub-TLV present
 - Prefix length: Length of prefix 8 bits
 - Prefix: Number of octet is calculated depending on the prefix length
IPv6 New TLV’s

• IPv6 address TLV 232
 – Modified to carry IPv6 address
 – For hello PDU interface address must use link local IPv6 address assigned to the interface
 – For LSP non-link local address must be used
Single SPF rules

- If IS-IS is used for both IPv4 and IPv6 in an area, both protocols must support the same topology within this area.
 - Could set “no adjacency-check” between L2 routers, but must be used with caution

- All interfaces configured with IS-ISv6 must support IPv6
 - Can’t be configured on MPLS/TE since IS-ISv6 extensions for TE are not yet defined

- All interfaces configured with IS-IS for both protocols must support both of them
 - IPv6 configured tunnel won’t work, GRE should be used in this configuration

- Otherwise, consider Multi-Topology IS-IS (separate SPF)
Introduction

- Mechanism that allows IS-IS, used within a single domain, to maintain a set of independent IP topologies
- Multi-Topologies extension can be used to maintain separate topologies for:
 - IPv4
 - IPv6
 - Multicast
- Topologies need not to be congruent (of course)
- Multiple topologies for same address family is allowed
 - Think about QBR…
 - The multicast dimension …
- IETF draft: draft-ietf-isis-wg-multi-topology
The problem

- Current IS-IS spec and implementation forces all protocols carried by IS-IS to agree on a common Shortest Path Tree
 - Single SPF run for all protocols
- Single SPT means congruent topologies
- Single SPT means all links need to understand all address families present in the domain
IS-IS Multi-Topologies Architecture

- Each router knows on which topologies it will establish adjacencies and build SPTs
 - Through configuration

- During adjacency establishment, peers need to agree on topologies
 - Topologies identifiers are exchanged in IIH packets
Two methods

- Multi-Topology
 - Single ISIS domain with set of independent IP topologies
 - Common flooding and resource associated with both router and network
 - Multiple SPF
 - Large Database

- Multi-instance
 - Multiple instance of protocol on a given link
 - Enhances the ability to isolate the resources associated with both router and network
 - Instance specific prioritization for PDUs and routing calculations
Two methods

- **OSPF currently is based on multi-instance**
 - Adding multi topology is very easy for OSPFv3
 - Multiple address family support is already there just minor extension for multi-topology needs to be added

- **ISIS**
 - Multi-topology support has been there for a while
 - Multi-instance draft is there for ISIS now

- **Which one is better**
 - Depends who you talk to
 - Operation (Multi-instance is better)
 - Development (Multi-Topology is better)
Convergence

- Convergence depends on several factors:
 - failure detection
 - change propagation
 - initial wait for SPF computation
 - time to run SPF
Convergence Considerations

The IGPs Will Compete over Processor Cycles Based on Their Relative Tuning

- If you configure the IPv4 and IPv6 IGPs the same way (aggressively tuned for fast convergence), naturally expect a doubling of their stand alone operation convergence time.

- If the IPv6 IGP is operating under default settings, the convergence time for the optimally tuned IPv4 IGP is not significantly affected.
OSPFv3 Fast Convergence

Following Techniques/tools are available for fast convergence in OSPFv3
- Carrier Delays Detect
- Hello/dead timers (Fast Hellos) Detect
- Bi-Directional Forwarding Detection—(BFD) Detect
- LSA packet pacing Propagate
- Interface event dampening - Propagate
- Exponential throttle timers for LSA & SPF Process
- MinLSArrival Interval Process
- Incremental SPF Process

Techniques/tools for Resiliency
- Stub router (e.g., max-metric)
- Cisco NSF (RFC 4811,4812,4813)
- Graceful Restart (ONLY RFC 3623)
ISIS Fast Convergence

- Following Techniques/tools are available for fast convergence in ISIS
 - Carrier Delays **Detect**
 - Hello/dead timers *(Fast Hellos)* **Detect**
 - Bi-Directional Forwarding Detection—*(BFD)* **Detect**
 - LSP pacing **Propagate**
 - Interface event dampening - **Propagate**
 - Exponential throttle timers for LSA & SPF **Process**
 - PRC-interval **Process**
 - Incremental SPF **Process**

- Techniques/tools for Resiliency
 - Cisco NSF
 - Graceful Restart
Conclusion
Conclusions

- OSPF is much more widely understood
 - Broadly deployed in enterprise market
 - Many books of varying quality available
 - Preserves our investment in terminology

- IS-IS is well understood within a niche
 - Broadly deployed within the large ISP market
 - Folks who build very large, very visible networks are comfortable with it
Conclusions

- For all but extreme cases (large full-mesh networks), protocols are pretty much equivalent in scalability and functionality.

- Stability and scalability are largely artifacts of implementation, not protocol design.

- Familiarity and comfort in both engineering and operations is probably the biggest factor in choosing.
Conclusions

- Does the world really need two protocols?
 - Nearly complete overlap in functionality means (ironically) that few people are motivated to switch
 - Entrenched constituencies (large ISPs; everyone else) ensure that installed bases will continue to exist
 - As long as there are two, people will never agree on only one
Questions?