BGP Prefix Origin Validation

Pradosh Mohapatra
Motivation

- Any AS can inject any prefix in BGP – prefix hijacking
 - Mistake (most likely)
 - Malicious (could be!)
- Hijacking manifestation
 - Announcing someone else’s prefix
 - Announcing a more specific of someone else’s prefix
- Some real-life incidents:
- Need a mechanism to differentiate between invalid and legit routes for a BGP destination
Same prefix: shorter AS_PATH wins

Source: nanog 46 preso
Same prefix: More specific wins

Source: nanog 46 preso
Youtube hijacking example

- An example of more specific hijacking stemming from misconfiguration …
Origin validation framework - components

- RPKI: passive side – object format
 - X.509 certificate with RFC3779 extensions for IP resources (IPAddress and ASN)
 - Route Origin Attestation (ROA) signed object
- RPKI: active side
 - Allocation hierarchy
 - Database maintenance
 - Transaction semantics, certificate checks, …

- Getting data to BGP speaking routers
- BGP operation for origin validation
Complete picture

[Diagram of network components and interactions, including RPKI Engine, IR Back End, Provisioning GUI, and Near/In PoP]

RCynic Gatherer

Cache / Server

RPKI to Rtr Protocol

BGP Decision Process

Provisioning GUI

Near/In PoP
Extremely Large ISP deployment
Route origin authorization (ROA)

- ROA is a digitally signed object distributed through the RPKI infrastructure
- Indicates the address prefix holder’s explicit authorization that an AS can rightfully originate a prefix
- Format: [AS, {prefix/mask, maxLen}+]

<table>
<thead>
<tr>
<th>ROA</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.0/8-16</td>
</tr>
<tr>
<td>AS 65431</td>
</tr>
</tbody>
</table>
BGP design

Prefix validation database

- Inline prefix validation
- Event-based validation on cache updates

BGP table

Cache-to-router protocol

BGP protocol

Remote Distributed RPKI repository

RPKI Cache
Cache-to-router protocol

- Persistent SSH session between the router and one or more caches
- Serial# based binary exchange of PDUs containing the prefix<->origin AS mappings
- PDUs formatted as TLVs
- Notification service for changes to the cache database and incremental updates
Prefix validation logic

1. query key = <BGP destination, masklen>, data = origin AS
2. result = BGP_PFXV_STATE_NOT_FOUND
3. walk prefix validation table to look for the query key
4. for each matched “entry” node in prefix validation table,
5. prefix_exists = TRUE
6. walk all records with different maxLength values
7. for each “record” within range (query masklen <= maxLength)
8. if query origin AS == record origin AS
9. result = BGP_PFXV_STATE_VALID
10. return (result)
11. endif
12. endfor
13. endfor
14. if prefix_exists == TRUE,
15. result = BGP_PFXV_STATE_INVALID
16. endif
17. return (result)
Policy execution

- **R2**

 - **IBGP update** (advertised with the set attributes from inbound policy execution)
 - **Run (best path) decision process**
 - **Add to ADJ-RIB-IN**
 - **Apply inbound policy (policy _may_ match on validity state and set arbitrary attributes)**
 - **Check and mark origin validity**
 - **EBGP update**
Policy examples

route-policy validity-0
 if origin-validation-state is valid then
 set local-preference 100
 else set local-preference 50
 endif
end-policy

route-policy validity-2
 if origin-validation-state is valid then
 set metric 100
 elseif origin-validate-state is not-found
 set metric 50
 else set metric 25
 endif
end-policy
Decision process changes

- Only enabled by configuration
- Before local-preference comparison step
- Path’s validation states:

```c
typedef enum {
    BGP_PFXV_STATE_VALID = 0,
    BGP_PFXV_STATE_NOT_FOUND = 1,
    BGP_PFXV_STATE_INVALID = 2,
} bgp_pfxv_state_e;
```

- Best path comparison

1. INPUT: received path, current bestpath
2. if received path’s validation state > current bestpath’s validation state
3. prefer current bestpath
4. else if received path’s validation state < current bestpath’s validation state
5. prefer received path
6. else goto next comparison step
7. endif
8. <rest of the tie breaking steps of BGP decision process>
Policy overrides

- Disable/enable prefix validation marking [globally, per EBGP peer, for a set of prefixes]
- Enable/disable validation state comparison in decision process [globally, per EBGP peer, for a set of prefixes]

[When disabled, the "state" of such EBGP learnt routes will be set to "not-found"]

- Allow "invalid" routes for bestpath selection
- Disallow "not-found" routes for bestpath selection
Extended community

- Prefix validation marking done only for EBGP updates
- Need a way to carry the marking across IBGP mesh so that other speakers take the correct/consistent best path decision
- Carry the validation state in an opaque extended community (non-transitive)
Status

- Prototype code for the routers available on IOS and IOS-XR
 Contact Ed Kern (ejk@cisco.com) if interested to play
- RPKI full implementation available as open source
 https://subvert-rpki.hactrn.net/
 Mailing list: rpki-testbed@rpki.net
Open Test bed

- Running Code
- Repository

*ARIN
- ISC
- Google
- BWC
- Level (3)

Trust Anchor
- ARIN
- ISC
- Google
- BWC
- Level(3)

*APNIC
- APNIC
- Trust Anchor

RGnet
- RGnet

JPNIC
- JPNIC

IIJ
- IIJ
- Cristel
- Mesh

until we get IANA to act as the parent

runs own RPKI to keep private key private and control own fate, but publishes at ARIN
Router configuration commands

- `router bgp <as#>`

 `bgp rpki cache <cache name> <port#> refresh-time <time>`

 `bgp origin-validation {disable}`

 `bgp bestpath compare-validation-state {allow-invalid | disallow-not-valid}`
Router show commands

<table>
<thead>
<tr>
<th>Network</th>
<th>Maxlen</th>
<th>Origin-AS</th>
<th>Color</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>64.9.224.0/19</td>
<td>24</td>
<td>15169</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>72.14.224.0/24</td>
<td>24</td>
<td>36384</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>72.14.230.0/24</td>
<td>24</td>
<td>36384</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>149.20.8.0/16</td>
<td>16</td>
<td>1280</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>192.5.4.0/24</td>
<td>24</td>
<td>3557</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>192.5.5.0/24</td>
<td>24</td>
<td>3557</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>192.158.248.0/24</td>
<td>24</td>
<td>27318</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>192.158.249.0/24</td>
<td>24</td>
<td>27319</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>192.158.250.0/24</td>
<td>24</td>
<td>27320</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>192.158.251.0/24</td>
<td>24</td>
<td>27321</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>192.158.252.0/24</td>
<td>24</td>
<td>27322</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>192.228.80.0/24</td>
<td>24</td>
<td>30122</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>192.228.81.0/24</td>
<td>24</td>
<td>30123</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>192.228.82.0/24</td>
<td>24</td>
<td>30126</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>192.228.83.0/24</td>
<td>24</td>
<td>30127</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>192.228.84.0/24</td>
<td>24</td>
<td>30124</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>192.228.85.0/24</td>
<td>24</td>
<td>30125</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>192.228.86.0/24</td>
<td>24</td>
<td>30128</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>192.228.87.0/24</td>
<td>24</td>
<td>30129</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>192.228.88.0/24</td>
<td>24</td>
<td>30130</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>192.228.89.0/24</td>
<td>24</td>
<td>8674</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>192.228.90.0/24</td>
<td>24</td>
<td>2580</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>192.228.91.0/24</td>
<td>24</td>
<td>27319</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>192.228.92.0/24</td>
<td>24</td>
<td>30131</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>199.6.0.0/24</td>
<td>24</td>
<td>33071</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>199.6.1.0/24</td>
<td>24</td>
<td>30132</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>199.6.2.0/24</td>
<td>24</td>
<td>30133</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>199.6.3.0/24</td>
<td>24</td>
<td>33073</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>199.6.4.0/24</td>
<td>24</td>
<td>30134</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>199.6.5.0/24</td>
<td>24</td>
<td>33072</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>199.6.6.0/24</td>
<td>24</td>
<td>33074</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>199.6.7.0/24</td>
<td>24</td>
<td>33075</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>199.6.8.0/24</td>
<td>24</td>
<td>33076</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>199.6.9.0/24</td>
<td>24</td>
<td>33077</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>199.6.10.0/24</td>
<td>24</td>
<td>33078</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>199.6.11.0/24</td>
<td>24</td>
<td>33079</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>199.6.12.0/24</td>
<td>24</td>
<td>33080</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>199.6.13.0/24</td>
<td>24</td>
<td>33081</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>199.6.14.0/24</td>
<td>24</td>
<td>33082</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>204.152.184.0/21</td>
<td>21</td>
<td>1280</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

RP/0/1/CPU0:r0.dfw#
Router show commands

```
RP/0/0/CPU0:cons-ejk-xr#show bgp 199.6.7.0/24
BGP routing table entry for 199.6.7.0/24
Versions:
  Process bRIB/RIB SendTblVer
  Speaker 0 0
Last Modified: Sep 30 09:58:36.715 for 00:04:36
Paths: (1 available, no best path)
  Not advertised to any peer
  Path #1: Received by speaker 0
  4128 25973 3549 16471 33075, (received & used)
    157.238.224.150 (inaccessible) from 157.238.224.150 (198.180.152.251)
      Origin IGP, localpref 100, valid, external, origin validity state: valid
```


Reference

- `draft-ietf-sidr-arch`
- `draft-pmohapat-sidr-pfx-validate`
- `draft-ymbk-rpki-rtr-protocol`
- `draft-pmohapat-sidr-origin-validation-signaling-00.txt`
Questions?
RPKI

[Hardware]
Signing Module

IR RPKI Priv Keys
Internal CA Data
ID=Me

Biz EE Signing Key(s)
Private RPKI Keys

RPKI Engine

Keys for Talking to IR BackEnd
ID=Me

Public RPKI Keys
Internal CA Data
Up/Down EE Public Keys
My Misc Config Options

Certs Issued to DownStreams
Issued ROAs

Publication Protocol
Repo Mgt

Resource PKI
IP Resource Certs
ASN Resource Certs
Route Origin Attestations

Up / Down Protocol
XML Object Transport & Handler

Up / Down Protocol
Internal Protocol

IR Back End

My Resources
My RightsToRoute
Stub Provided to be Hacked

Private IR Biz Trust Anchor
Internal CA Data

Business Key/Cert Management