Building A Cheaper Peering Router

(Actually it’s more about buying a cheaper router and applying some routing tricks)
What’s this all about?

- Network infrastructure can be expensive.
- One of the most common issues encountered when networks needs peering upgrades are the router ports themselves.
 - If not for your network, than for the network you want to peer with.
 - No ports available, not enough space and/or power for new boxes.
 - Price of ports is an issue, especially when non revenue generating.
- 10GigabitEthernet is the current standard for interconnection.
 - And many smart networks have moved from SONET capable routers (GSR, CRS, T-series, etc) to “Ethernet-centric” boxes for peering.
 - But peering routers are still a significant expense.
 - And many existing peering edge routers are running out of steam in terms of ports, density, etc.
Vendors have reacted to this need

- Historically you had very expensive core routers
 - Cisco GSR and CRS
 - Juniper T-series
 - etc.
- And very cheap but somewhat feature limited customer boxes.
 - Cisco 6500
 - etc.
- Vendors have also created a “middle tier” in features and price
 - Juniper MX
 - Cisco 7600 with ES cards
 - Cisco ASR 9000
 - Foundry MLX/XMR
 - etc.
This is nice…but…

- In the last few years there’s been an explosion of much cheaper and denser 10 Gigabit Ethernet boxes.
 - Targeted at the datacenter / top-of-rack role.
 - Supporting only datacenter optics (SFP+ only, nothing long reach).
 - Sometimes lacking large packet buffers.
 - Lacking many advanced features an ISP might want.
 - And often using outsourced routing ASICs (“commodity silicon”)

- But they’ve got some pretty neat characteristics too:
 - Small boxes (1U or 2U) with 24 or 48+ port 10GE density.
 - Larger boxes with support for 16-32 slots of Nx10GE cards.
 - And SFP+ optics CAN significantly reduce infrastructure costs.
What are some of these boxes?

- Cisco ASR9K
 - Based on EZchip chips
- Juniper EX
 - Based on Marvell chips
- Dell
 - Based on Broadcom chips
- Force10
 - Based on Broadcom chips
- Foundry/Brocade
 - Based on Broadcom chips
- Arista
 - Based on Fulcrum chips
Could these cheap boxes have a viable role in a service provider network?

- Your existing vendors will strongly suggest no, obviously 😊
- There’s a few challenges preventing you from doing this:
 - Limited FIB size
 - Internet is ~330,000 routes, these boxes can do maybe ~12,000
 - Lack of QoS features
 - Hierarchical QoS? At best, maybe 4 queues per interface
 - Some of these boxes lack any kind of decent software
 - You like pipe and regex? Ha…
 - Access-Lists / Packet Filters
 - Protecting your network is important
 - Lack of forwarding features
- But maybe not all of these features are hard to implement…
Getting around FIB constraints

• Separation of the RIB vs. FIB is critical.
 • The RIB holds information from the routing protocols (BGP, IGP).
 • The FIB holds the final table used for forwarding packets.
• We’ll need to have a large RIB, since we’ll need to exchange lots of BGP routes with neighbors (transits, peers, customers).
• Fortunately RAM is cheap, and even the 1U boxes are shipping with 1GB of DRAM, so this is less of a problem.
• The key is to not install every single route in the FIB, only what you need should be there.
How many people use QoS extensively within their network?

Most networks focused on transporting bits across the Internet generally aren't the major consumers of heavy QoS functionality.

People selling multi-services (L2VPN, L3VPN, Transit, etc) on a converged network are.

(Those people are typically telcos and large carriers)

The simple QoS features these devices have should be sufficient or not a show stopper.
Lack of forwarding features?

• As these boxes were destined for the datacenter, they’re devoid of features used by most service providers.

• But one application driving datacenter boxes is Cloud…
 • And cloud applications require the ability for servers to talk to each other across networks larger than what L2 would be reasonable for.

• This is driving vendors to support more modern L2 networks.
 • TRILL
 • 802.1aq (Shortest Path Bridging)
 • MPLS VPNs (e.g. VPLS)

• Much of this is still on the roadmap, but there is significant demand and support for implementing it.
Packet Filters

• It’s a pretty critical requirement to have some sort of ACLs on your edge to prevent bad things:
 • Protect your infrastructure
 • Protect your customers
 • Hello packet police? Yes, our IRC server is getting attacked and…
• At best expect simple packet filters up to layer 3 or 4.
• Don’t expect logging or complex matches
 • Packet length, policing, IP options are probably out the window
• Focus on filtering packets towards infrastructure and perhaps a combination of Null routing portions of infrastructure space you don’t want packets going.
Decent software?

- Many cheap 1U/2U boxes have really horrible software code.
- This is because chip manufacturers don’t know the first thing about writing good software for routers.
 - And why should they? It’s not their area of expertise.
 - Can you imagine if Intel had to write your computer’s OS?
- Some vendors will just ship the reference software.
 - Dell, Force10 S50, etc.
 - Most try to duplicate Cisco IOS, but at a 1st grade level.
- Other vendors will modify their existing OS to control the 3rd party ASICs.
 - Cisco, Juniper, Foundry/Brocade, etc.
Decent software? (cont’d)

• The OpenFlow project is particularly interesting here.
 • Allows developers to write third party software to control the router.
 • This removes the dependency that every router must have a decent control plane and software running on it.
 • Instead, you write your control plane and run it off-router, then push the FIB results to the hardware.
What’s unique about this approach?

- To pull off routing without a full table, we’re going to rely upon BGP Unicast-Label.
- BGP Unicast-Label is another BGP address-family, similar to IPv4 unicast, IPv6 unicast, etc.
- What is unique about BGP Unicast-Label is that it allows you to allocate a MPLS label for a prefix.
 - This is similar to how LDP and RSVP allocate labels.
So let's try a little experiment…

• For testing purposes, we’re working on a Juniper EX4500
 • Line rate 48x10GE in 2U, 12K FIB, 1GB of DRAM.

• Step 1: Hang it off something “smart”
 • Our cheap box is a stub that hangs off of a larger core router.
 • Assume that Core router has a full table and our little 1U box will handle links to peers, transit and customers.

• You only really need to do this if you need a route of last resort and your small cheap box can handle encapsulating traffic in some protocol (GRE, MPLS, etc)
Participate in the IGP

• Step 2: Establish IGP adjacencies

• This is critical for a few reasons:
 • We want BGP next-hops visible when we advertise routes via BGP
 • Passing IGP costs into BGP MED
 • BGP next-hop validation/reachability
 • Link-liveliness detection with the rest of the network

• A well designed IGP has a small number of routes anyways.
Split the RIB from FIB

- **Step 3: Define what routes you want installed in the FIB**
 - On Juniper this is done in the “forwarding-table export” policy.

- **Some ideas:**
 - **Directly connected interfaces**
 - It’s directly connected, you probably want to know you can forward to it
 - **IGP routes**
 - ISIS or OSPF
 - **Internal / Customer networks**
 - Match on BGP community
 - **Default-Route pointing internally**
 - Questionable – Depends if you trust your peers
Establishing iBGP connectivity

- Step 4: Bring up BGP internally

- Utilize BGP Add-Paths
 - Allows you to advertise multiple paths for the same prefix, not just the single best path.

- This is a new feature, but a very cool one.
 - Has a significantly higher memory footprint, but you can control what routes you want to advertise duplicates of.
Next-Hop Tricks

- Step 5: Use BGP Unicast-Label + MPLS to bypass lookups
- Advertise each peer point-to-point as into iBGP with a unicast-label.
 - Redistributing directly connected (/30s for example) only originates implicit-null labels, which is useless.
 - You can however generate a /32 static route of the peers IP address with a next-hop of the peers /32 address:

 route 69.22.173.26/32 next-hop 69.22.173.26;
 route 69.22.173.5/32 next-hop 69.22.173.5;

 Yes, it looks funny but it works.
Next-Hop Tricks

• When you learn routes from a peer/customer/transit, do not rewrite BGP next-hop-self.
 • Advertise the true next-hop (remote end of a /30)

• IP lookup is bypassed as you are performing a MPLS label operation
 • POP and forwarding traffic out the egress interface
Example: RIB & FIB

Routing Table (RIB)

<table>
<thead>
<tr>
<th>Prefix</th>
<th>AS-Path</th>
<th>Next-Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.10.0.0/24</td>
<td>65551</td>
<td>10.0.1.1</td>
</tr>
<tr>
<td>10.10.0.0/24</td>
<td>65552</td>
<td>10.0.2.1</td>
</tr>
<tr>
<td>10.10.0.0/24</td>
<td>65553</td>
<td>10.0.3.1</td>
</tr>
</tbody>
</table>

Forwarding Table (FIB)

<table>
<thead>
<tr>
<th>Prefix / Label</th>
<th>Egress Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>7132</td>
<td>xe-0/0/1</td>
</tr>
<tr>
<td>7018</td>
<td>xe-0/0/2</td>
</tr>
<tr>
<td>4436</td>
<td>xe-0/0/3</td>
</tr>
<tr>
<td>10.0.1.1/31</td>
<td>xe-0/0/1</td>
</tr>
<tr>
<td>10.0.2.1/31</td>
<td>xe-0/0/2</td>
</tr>
<tr>
<td>10.0.3.1/31</td>
<td>xe-0/0/3</td>
</tr>
</tbody>
</table>
Advertising routes back to the network

<table>
<thead>
<tr>
<th>IPv4 Unicast Address-Family</th>
<th>AS-Path</th>
<th>Next-Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.10.0.0/24</td>
<td>65551</td>
<td>10.0.1.1</td>
</tr>
<tr>
<td>10.10.0.0/24</td>
<td>65552</td>
<td>10.0.2.1</td>
</tr>
<tr>
<td>10.10.0.0/24</td>
<td>65553</td>
<td>10.0.3.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unicast-Label Address-Family</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.10.0.0/24</td>
<td>7132</td>
</tr>
<tr>
<td>10.10.0.0/24</td>
<td>7018</td>
</tr>
<tr>
<td>10.10.0.0/24</td>
<td>4436</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Next-Hop</th>
<th>Push Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.10.0.0/24</td>
<td>10.0.1.1</td>
<td>7132</td>
</tr>
<tr>
<td>10.10.0.0/24</td>
<td>10.0.2.1</td>
<td>7018</td>
</tr>
<tr>
<td>10.10.0.0/24</td>
<td>10.0.3.1</td>
<td>4436</td>
</tr>
<tr>
<td>10.20.0.1/32</td>
<td>--------</td>
<td>16509</td>
</tr>
</tbody>
</table>
Examples

show route table mpls.0:

300064 *[VPN/170] 1d 12:18:12
 > to 69.22.173.26 via ae1.80, Pop
300080 *[VPN/170] 1d 11:30:51
 > to 69.22.173.5 via ae1.71, Pop
Examples

Next-Hop: 69.22.173.26 (Label 300064)

4 xe-3-0-0.cr1.ord1.us.nlayer.net (69.22.142.74) 124.127 ms 93.544 ms 93.526 ms
 MPLS Label=455769 CoS=0 TTL=1 S=0 ← Outer Label
 MPLS Label=300064 CoS=0 TTL=4 S=1 ← Inner Label
5 xe-2-0-0-91.mx240-1.lab1.nlayer.net (69.22.173.34) 94.030 ms 101.947 ms 108.593 ms
 MPLS Label=300064 CoS=0 TTL=1 S=1 ← POP
6 10.251.1.2 (10.251.1.2) 95.773 ms 96.924 ms 95.972 ms

Next-Hop: 69.22.173.5 (Label 30080)

4 xe-3-0-0.cr1.ord1.us.nlayer.net (69.22.142.74) 99.206 ms 93.627 ms 97.893 ms
 MPLS Label=455769 CoS=0 TTL=1 S=0 ← Outer Label
 MPLS Label=300080 CoS=0 TTL=4 S=1 ← Inner Label
5 xe-2-0-0-91.mx240-1.lab1.nlayer.net (69.22.173.34) 98.022 ms 104.927 ms 101.347 ms
 MPLS Label=300080 CoS=0 TTL=1 S=1 ← POP
6 10.251.1.2 (10.251.1.2) 103.776 ms 95.709 ms 95.911 ms
What about inbound traffic?

- That depends on the network.
- If your “internal routes” are larger than the FIB of your cheap router, you’re going to have to cheat.
 - By cheat, I mean point a default route to the next upstream router.
 - You can also point this to another router elsewhere in the network that has a full table (anycast “helper routers” as it were).
- If your internal routes are few, you can simply install those into the FIB.
- The problem with the default is you are at risk for someone pointing static routes at you.
Wow, does this really work?

- It looks like it does…

 > show route table mpls.0

 mpls.0: 7 destinations, 7 routes (7 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both

 0 *[MPLS/0] 6w2d 04:10:23, metric 1
 Receive
 1 *[MPLS/0] 6w2d 04:10:23, metric 1
 Receive
 2 *[MPLS/0] 6w2d 04:10:23, metric 1
 Receive
 1000001 *[MPLS/6] 03:37:35, metric 1
 > to 69.22.173.17 via xe-0/0/9.0, Pop
 1000001(S=0) *[MPLS/6] 02:08:27, metric 1
 > to 69.22.173.17 via xe-0/0/9.0, Pop
 1000002 *[MPLS/6] 03:35:25, metric 1
 > to 69.22.173.21 via xe-0/0/11.0, Pop
 1000002(S=0) *[MPLS/6] 03:35:25, metric 1
 > to 69.22.173.21 via xe-0/0/11.0, Pop
• …but doesn’t:

[271451] mrvl_rt_entry_create: MRVL_RT-vrf:0 rt:1000001
[271466] mrvl_rt_entry_install: MRVL_RT-vrf:0 rt:1000001, action:0
[271467] mrvl_rt_entry_construct_ltt_entry: MRVL_RT-1000001
[271471] mrvl_rt_mpls_ltt_install: MRVL_RT-mpls ltt install device 0, entry 3277
[271472] mrvl_rt_mpls_ltt_install: MRVL_RT-mpls ltt install device 1, entry 3277
[271474] mrvl_rt_regular_mpls_entry_install: mpls rt tti_set failed: 5
[271481] mrvl_rt_entry_create: MRVL_RT-vrf:0 rt:1000001(S=0)
[271487] mrvl_rt_mpls_entry_create: MRVL_RT-rt:1000001(S=0) nh: 0

• Output from pfem daemon crashing after executing some choice show commands.
Almost there…

• Most of the pieces are there to do this:
 • BGP Add-Paths to give you multiple BGP path visibility
 • RIB/FIB separation so you can operate BGP with peers, route full tables, full policy controls
• It is feasible to do this on other Juniper gear that actually support MPLS.
 • Working examples given on a MX240
• It works on some Cisco boxes, too.
But there is hope

- MPLS support should be coming in future Juniper EX models
- Other merchant silicon boxes should have some MPLS support hopefully within the next year
 - Don’t expect great MPLS software implementations of RSVP, LDP.
 - May have to rely upon static/nailed up LSPs
 - Routing protocol functionality (BGP, OSPF, ISIS) may not be all there.
 - Juniper EX used as an example as it does the routing part fairly well.

- An open item is how well will these cheap boxes handle lookups and MPLS actions (push/pop/swap).
Send questions, comments, complaints to:

Tom Scholl tscholl@nlayer.net