
L3DSR – Overcoming Layer 2 Limitations 
of Direct Server Return Load Balancing 

Jan Schaumann, Systems Architect
<jschauma@yahoo-inc.com>!

E2A7 437A 7AB8 6EA1 7E1D!

F6DC BF09 CDC9 E157 FAB8!



Traditional or L2 DSR 
  "Direct Server Return" also known as: 

›  "Direct Routing" 
›  "SwitchBack" (Foundry/Brocade) 
›  "nPath" (F5) 

  General packet flow: 
›  clients send requests to a Virtual IP (VIP) served by the LoadBalancer 
›  LB determines real server to forward the request to 
›  LB performs MAC Address Translation (MAT) 
›  server responds directly to client, bypassing the LB 

January 30, 2011 2 NANOG 51, Miami 



  Client to LB: 
›  Source IP: 1.1.1.1 
›  Destination IP: 2.2.2.2 
›  Destination MAC: AAAA 

  LB to Server: 
›  Source IP: 1.1.1.1 
›  Destination IP: 2.2.2.2 
›  Destination MAC: BBBB 

  Server to Client: 
›  Source IP: 2.2.2.2 
›  Destination IP: 1.1.1.1 
›  Destination MAC: default gateway's MAC 

Traditional or L2 DSR 

January 30, 2011 3 NANOG 51, Miami 



  Layers are independent (L2 does not care about L3 information) 

  LB and server both have VIP configured 
  server must not answer ARP for VIP 
  service must bind to VIP 

›  service may also have to bind to real IP for health checking 

  LB and server need to be on the same L2 network segment 

Traditional or L2 DSR 

January 30, 2011 4 NANOG 51, Miami 



  Clients' source addresses are preserved 
›  Yahoo! is very interested in knowing the source address of any incoming requests 

Advantages of L2 DSR 

January 30, 2011 5 NANOG 51, Miami 

  Performance 
›  LB only handles inbound packets 
›  typical inbound traffic is much smaller than outbound traffic (about 1:8 for typical 

Yahoo! traffic) 
›  normal DSR LBs at Y! can have hundreds of VIPs across hundreds of real servers, 

handling multiple Gbps of inbound traffic (tens of Gbps of outbound traffic) 

›  SNAT loses the clients' addresses 

›  SNAT forces all traffic through the LB 



  server cannot directly respond to ARP requests for VIP 
›  configuration of loopback aliases (or alias on interface marked as "down") 

Limitations of L2 DSR 

January 30, 2011 6 NANOG 51, Miami 

  health checking requires additional configuration 
›  service on VIP on loopback alias 
›  service on VIP for health check (some models) 

  Port translation not possible 
›  port selection is protocol dependent, so does not happen on Layer 2 

  LB and all servers need to be on the same L2 network segment 
›  physical location of servers behind VIP restricted 
›  flexibility within datacenter limited 



  instability on very large (10K+ hosts) networks 

  STP designs require an active/backup design for rack uplinks – we 
wanted active/active for any single rack switch 

  if we require multiple L2 domains (for stability), hosts in different L2 
domains cannot participate in the same VIP 
›  physical location of servers behind VIP restricted 
›  flexibility within datacenter limited 

What's "wrong" with L2 anyway? 

January 30, 2011 7 NANOG 51, Miami 



  Server needs to know 
›  client source address 
›  VIP address for which the request was made 

  LB needs to 
›  tell the server behind the VIP the source address of the client 
›  send request to an IP different from the VIP 

How do we get from L2 to L3? 

January 30, 2011 8 NANOG 51, Miami 

›  tell the server the original destination address (ie the VIP to serve) 



A simple matter of communication... 

January 30, 2011 9 NANOG 51, Miami 

  Where can we put extra information? 
  Options considered: 

›  Generic Routing Encapsulation (GRE) 
›  IP-in-IP tunnelling (RFC1853) 

  Main Issues: Path MTU Discovery 
›  IP/IP and GRE add 24 bytes overhead 
›  largest packet in tunnel would be 1476 bytes => PMTUD issues from client to LB 
›  changing server side MTU to 1524 impacts all traffic on that host, may cause 

PMTUD issues from server to client 



A simple matter of communication... 

January 30, 2011 10 NANOG 51, Miami 

  Where can we put extra information? 
  Options considered: 

›  Generic Routing Encapsulation (GRE) 
›  IP-in-IP tunnelling (RFC1853) 



Something-something of Service 
  TOS, QoS, COS – none used in Yahoo!'s environment 

January 30, 2011 11 NANOG 51, Miami 

  map these bits to VIPs: 
›  "DSCP 010001 means original destination address was 1.1.1.2" 
›  010001 => 1.1.1.2 
›  ... 

  let's reserve a few just in case... 
  use of bits 010XXX – 101XXX yields 40 values (per LB) 

 => we have 6 completely unused bits 

  we don't have to send the full address 
›  server just needs to derive the full address from the information 

we relay 



  LB and servers need to agree on DSCP <=> VIP mapping 

L3DSR Packet Flow 

January 30, 2011 12 NANOG 51, Miami 

  LB sets DSCP bit according to known mapping 
  LB changes destination address to the server's (real) IP, keeps client's 

source address 

  Server checks DSCP bit 
  Server rewrites destination address according to known mapping to 

appropriate VIP 
  VIP configured on loopback alias as with L2DSR 
  Server responds to client's source address from VIP 



L3DSR Packet Flow 

January 30, 2011 13 NANOG 51, Miami 

  Incoming: 
›  Client Source IP: 144.100.10.1!
›  Client Destination IP: 198.18.0.250!
›  DSCP: 0x0 (explicitly cleared) 

  LB to Server: 
›  Source IP: 144.100.10.1!
›  Destination IP: 74.80.1.1!
›  DSCP: 0x4!

  Server to Client: 
›  Source IP: 198.18.0.250!
›  Destination IP: 144.100.10.1!



Hardware Vendor Support 

January 30, 2011 14 NANOG 51, Miami 

  A10 AX3200 >= 2.2.5 
  Brocade ADX Series >= 12.1d 
  Brocade/Foundry ServerIron 450 

›  M7 and JetCore blades 
›  >= 10.2.01p 

  Citrix Netscaler running 8.x, 9.x 



slb template port dscp_port_7!
   dscp 7!
!!
slb server hostname.yahoo.com 10.128.9.31!
   port 80 tcp!
      template port dscp_port_7!
!!
slb service-group vip1.yahoo.com:80 tcp!
   health-check status.html!
   member hostname.yahoo.com:80!
!!
slb virtual-server vip1.yahoo.com 10.128.8.45!
   port 80 tcp!
   service-group vip1.yahoo.com:80!
   no-dest-nat!

Hardware Vendor Support – A10 

January 30, 2011 15 NANOG 51, Miami 



server remote-name hostname.yahoo.com 10.128.9.35  !

 port default disable!

 port http!

 port http url "GET /index.html"!

!!

server virtual vip1.yahoo.com 10.1.128.49!

 tos-marking 7 hc-l3-dsr!

 port default disable!

 port http!

 bind http hostname.yahoo.com http!

! !

Hardware Vendor Support – Brocade 

January 30, 2011 16 NANOG 51, Miami 



add lb monitor index.html HTTP -respCode 200 !\!

  -httpRequest "GET /index.html" -interval 7 !\!

  -retries 2!

add server hostname.yahoo.com 10.128.9.35!

add service hostname.yahoo.com-80            !\!

  hostname.yahoo.com ANY 80                  !\!

  -usip YES -cip DISABLED!

bind lb monitor index.html hostname.yahoo.com-80!

add lb vserver vip1.yahoo.com-80 ANY         !\!

  10.128.8.44 80 -lbmethod ROUNDROBIN ! !\!

  -m TOS -tosId 7!

bind lb vserver vip1.yahoo.com-80            !\!

  hostname.yahoo.com-80!

Hardware Vendor Support – Citrix 

January 30, 2011 17 NANOG 51, Miami 



  Yahoo! developed kernel module providing a simple single-purpose 
packet filter 

  enable destination-address rewriting via sysctl(8)!
  originally written by John Baldwin, now maintained by Jan 

Schaumann 
  a whooping 256 lines of code (including comments etc.) 
  support version 6 and above (i386/amd64) 

Server OS Support – FreeBSD   

January 30, 2011 18 NANOG 51, Miami 



$ sudo /sbin/kldload dscp_rewrite!

Server OS Support – FreeBSD   

January 30, 2011 19 NANOG 51, Miami 

$ /sbin/kldstat | grep dscp!

 5    1 0xffffff8000be9000 106000   dscp_rewrite.ko!
$ sudo sysctl -w net.inet.ip.dscp_rewrite.enabled=1!

net.inet.ip.dscp_rewrite.enabled: 0 -> 1!

$ sudo sysctl -w net.inet.ip.dscp_rewrite.7=10.1.128.49!

net.inet.ip.dscp_rewrite.7: 0.0.0.0 -> 10.1.128.49!

$ sudo /sbin/ifconfig lo0 10.1.128.49 netmask 0xffffffff alias!

$ ifconfig -a!

bce0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500!

        options=1bb<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,JUMBO_MTU,VLAN_HWCSUM,TSO4>!

        ether 00:15:c5:e5:4c:69!

        inet 10.128.9.35 netmask 0xffffff00 broadcast 10.128.9.255!

        media: Ethernet 1000baseTX <full-duplex>!

        status: active!

lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> metric 0 mtu 16384!

        inet6 fe80::1%lo0 prefixlen 64 scopeid 0x5!

        inet6 ::1 prefixlen 128!

        inet 127.0.0.1 netmask 0xff000000!

        inet 10.1.128.49 netmask 0xffffffff!



$ ping -c 3 -z 28 10.128.9.35   !

PING 10.128.9.35 (10.128.9.35): 56 data bytes!

64 bytes from 10.1.128.49: icmp_seq=0 ttl=64 time=0.035 ms!

64 bytes from 10.1.128.49: icmp_seq=1 ttl=64 time=0.046 ms!

64 bytes from 10.1.128.49: icmp_seq=2 ttl=64 time=0.045 ms!

--- 10.128.9.35 ping statistics ---!

3 packets transmitted, 3 packets received, 0.0% packet loss!

round-trip min/avg/max/stddev = 0.035/0.042/0.046/0.005 ms!

Server OS Support – FreeBSD   

January 30, 2011 20 NANOG 51, Miami 

15:25:59.822743 IP (tos 0x1c, ttl 64, id 11612, offset 0, flags [none], proto ICMP (1), length 
84) 10.128.9.35 > 10.128.9.35: ICMP echo request, id 22133, seq 0, length 64!

15:25:59.822759 IP (tos 0x1c, ttl 64, id 11613, offset 0, flags [none], proto ICMP (1), length 
84) 10.1.128.49 > 10.128.9.35: ICMP echo reply, id 22133, seq 0, length 64!

15:26:00.823815 IP (tos 0x1c, ttl 64, id 11617, offset 0, flags [none], proto ICMP (1), length 
84) 10.128.9.35 > 10.128.9.35: ICMP echo request, id 22133, seq 1, length 64!

15:26:00.823831 IP (tos 0x1c, ttl 64, id 11618, offset 0, flags [none], proto ICMP (1), length 
84) 10.1.128.49 > 10.128.9.35: ICMP echo reply, id 22133, seq 1, length 64!

15:26:01.835959 IP (tos 0x1c, ttl 64, id 11621, offset 0, flags [none], proto ICMP (1), length 
84) 10.128.9.35 > 10.128.9.35: ICMP echo request, id 22133, seq 2, length 64!



  Yahoo! developed kernel module and iptables(8) plugin to allow 
mangling of the DSCP field 

  enable destination-address rewriting via iptables(8)!
  originally written and now maintained by Quentin Barnes 
  another whooping ~200 lines of code or so 
  supports RHEL 4, 5 (i386/amd64; xenU) 

Server OS Support – RHEL   

January 30, 2011 21 NANOG 51, Miami 



$ sudo iptables -t mangle -A PREROUTING -m dscp –dscp 7 -j DADDR --set-daddr=10.128.8.46 !

Server OS Support – RHEL   

January 30, 2011 22 NANOG 51, Miami 

$ lsmod | grep ipt!

iptable_mangle          4545  1!

ipt_DADDR               4352  5!

ipt_dscp                3137  5!

ip_tables              21825  3 iptable_mangle,ipt_DADDR,ipt_dscp!

$!$ sudo iptables -t mangle -L!

Chain PREROUTING (policy ACCEPT)!

target     prot opt source      destination!

DADDR      all  --  anywhere    anywhere      DSCP match 0x1c DADDR set 10.128.8.46!

[...]!

$ sudo ifconfig lo:1 10.128.8.46 netmask 255.255.255.255!

$ ifconfig -a | more!

eth0      Link encap:Ethernet  HWaddr 00:11:43:E1:DA:F0!

          inet addr:10.128.9.31  Bcast:10.128.9.255  Mask:255.255.255.0!

          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1!

lo:1      Link encap:Local Loopback!

          inet addr:10.128.8.46  Mask:255.255.255.255!

          UP LOOPBACK RUNNING  MTU:16436  Metric:1!



$ ping -c 3 –Q 28 10.128.9.31!

PING 10.128.9.31 (10.128.9.31) 56(84) bytes of data.!

64 bytes from 10.128.8.46: icmp_seq=0 ttl=64 time=0.084 ms!

64 bytes from 10.128.8.46: icmp_seq=1 ttl=64 time=0.106 ms!

64 bytes from 10.128.8.46: icmp_seq=2 ttl=64 time=0.112 ms!

--- 10.128.9.31 ping statistics ---!

3 packets transmitted, 3 received, 0% packet loss, time 2000ms!

rtt min/avg/max/mdev = 0.084/0.100/0.112/0.016 ms, pipe 2!

Server OS Support – RHEL   

January 30, 2011 23 NANOG 51, Miami 

07:57:27.121040 IP (tos 0x1c, ttl  64, id 0, offset 0, flags [DF], proto 1, length: 84) 
10.128.9.32 > 10.128.9.31: icmp 64: echo request seq 0!

07:57:27.121049 IP (tos 0x1c, ttl  64, id 7562, offset 0, flags [none], proto 1, length: 84) 
10.128.8.46 > 10.128.9.32: icmp 64: echo reply seq 0!

07:57:28.120800 IP (tos 0x1c, ttl  64, id 0, offset 0, flags [DF], proto 1, length: 84) 
10.128.9.32 > 10.128.9.31: icmp 64: echo request seq 1!

07:57:28.120807 IP (tos 0x1c, ttl  64, id 7563, offset 0, flags [none], proto 1, length: 84) 
10.128.8.46 > 10.128.9.32: icmp 64: echo reply seq 1!

07:57:29.120608 IP (tos 0x1c, ttl  64, id 0, offset 0, flags [DF], proto 1, length: 84) 
10.128.9.32 > 10.128.9.31: icmp 64: echo request seq 2!

07:57:29.120616 IP (tos 0x1c, ttl  64, id 7564, offset 0, flags [none], proto 1, length: 84) 
10.128.8.46 > 10.128.9.32: icmp 64: echo reply seq 2!



  need to be able to check to see if the iptables plugin/kernel module is 
in place and working correctly – otherwise traffic may get blackholed 

L3DSR Health Checking 

January 30, 2011 24 NANOG 51, Miami 

  LB sends: 
›  Source IP: <LB IP> Dest IP: <Server IP> 
›  Healthcheck URL "GET /index.html" 
›  DSCP: 7 

  Server replies: 
›  Source IP: <VIP IP> Dest IP: <LB IP> 
›  Status code "200 OK" 

  due to destination address rewriting, source/destination on the LB do 
not match 



L3DSR Benefits 
  Location Independence of servers within the datacenter 

›  we can physically move hosts across different Layer 2 segments 
›  we can rebuild a host on a different Layer 2 segment, then use it to replace broken 

hosts 
›  we can deploy new hosts to add to existing VIPs without concern for the physical 

location / IP allocation within same Layer 2 segment 

January 30, 2011 25 NANOG 51, Miami 

  Preservation of clients' source address 
  DSR Performance 

›  up to 8x the number of VIPs per LB compared to other L3 techniques 



L3DSR Drawbacks 
  use of DSCP bits reserved for L3DSR cannot simultaneously be used 

for QoS 

  need to keep track of the DSCP <=> VIP mappings 
›  extend the database storing VIP settings 
›  update any tools used to turn centrally stored values into host configuration 

  increased complexity 
›  host configuration now requires additional kernel modules and configuration steps 
›  new code and new configuration options on load balancers 
›  more places where things can go wrong 

January 30, 2011 26 NANOG 51, Miami 



L3DSR Caveats 

January 30, 2011 27 NANOG 51, Miami 

22:43:43.855888 IP (tos 0x1c, ttl 64, id 35851, offset 0, flags [none], proto ICMP (1), 
length 84, bad cksum 0 (->251c)!) 10.163.162.14 > 10.163.163.17: ICMP echo request, id 
6179, seq 0, length 64!

22:43:43.856092 IP (tos 0x0, ttl 64, id 16332, offset 0, flags [none], proto ICMP (1), 
length 84) 10.163.163.17 > 10.163.162.14: ICMP echo reply, id 6179, seq 0, length 64!

22:43:44.897346 IP (tos 0x1c, ttl 64, id 35856, offset 0, flags [none], proto ICMP (1), 
length 84, bad cksum 0 (->2517)!) 10.163.161.14 > 10.163.163.17: ICMP echo request, id 
6179, seq 1, length 64!

22:43:43.855888 IP (tos 0x0, ttl  64, id 35851, offset 0, flags [none], proto: ICMP (1), 
length: 84) 10.163.162.14 > 10.163.163.17: ICMP echo request, id 6179, seq 0, length 
64!

22:43:43.856092 IP (tos 0x0, ttl  64, id 16332, offset 0, flags [none], proto: ICMP (1), 
length: 84, bad cksum 0 (->715b)!) 10.163.163.17 > 10.163.162.14: ICMP echo reply, id 
6179, seq 0, length 64!

22:43:44.897346 IP (tos 0x0, ttl  64, id 35856, offset 0, flags [none], proto: ICMP (1), 
length: 84) 10.163.162.14 > 10.163.163.17: ICMP echo request, id 6179, seq 1, length 
64!



A10: 
slb template port dscp_port_7!
   dscp 7!

Brocade: 
server virtual vip1.yahoo.com 10.1.128.49!
 tos-marking 7 hc-l3-dsr!

Citrix: 
add lb vserver vip1.yahoo.com-80 ANY         !\!
  10.128.8.44 80 -lbmethod ROUNDROBIN ! !\!
  -m TOS -tosId 7!

L3DSR Caveats 

January 30, 2011 28 NANOG 51, Miami 



L3DSR Caveats 

January 30, 2011 29 NANOG 51, Miami 

$ ping -c 3 -z 28 10.128.9.35   !

PING 10.128.9.35 (10.128.9.35): 56 data bytes!

64 bytes from 10.1.128.49: icmp_seq=0 ttl=64 time=0.035 ms!

64 bytes from 10.1.128.49: icmp_seq=1 ttl=64 time=0.046 ms!

64 bytes from 10.1.128.49: icmp_seq=2 ttl=64 time=0.045 ms!

--- 10.128.9.35 ping statistics ---!

3 packets transmitted, 3 packets received, 0.0% packet loss!

round-trip min/avg/max/stddev = 0.035/0.042/0.046/0.005 ms!

$!

15:25:59.822743 IP (tos 0x1c, ttl 64, id 11612, offset 0, flags [none], proto ICMP (1), length 
84) 10.128.9.35 > 10.128.9.35: ICMP echo request, id 22133, seq 0, length 64!

15:25:59.822759 IP (tos 0x1c, ttl 64, id 11613, offset 0, flags [none], proto ICMP (1), length 
84) 10.1.128.49 > 10.128.9.35: ICMP echo reply, id 22133, seq 0, length 64!

15:26:00.823815 IP (tos 0x1c, ttl 64, id 11617, offset 0, flags [none], proto ICMP (1), length 
84) 10.128.9.35 > 10.128.9.35: ICMP echo request, id 22133, seq 1, length 64!

15:26:00.823831 IP (tos 0x1c, ttl 64, id 11618, offset 0, flags [none], proto ICMP (1), length 
84) 10.1.128.49 > 10.128.9.35: ICMP echo reply, id 22133, seq 1, length 64!

15:26:01.835959 IP (tos 0x1c, ttl 64, id 11621, offset 0, flags [none], proto ICMP (1), length 
84) 10.128.9.35 > 10.128.9.35: ICMP echo request, id 22133, seq 2, length 64!

DSCP = 7    (configure) 
TOS = 28     (check) 
Hex = 0x1c  (troubleshoot) 



Future Enhancements 
  Port Translation 

›  now possible – we're on Layer 3 
›  may require the server-side kernel module to also rewrite the port of the incoming 

packets 

January 30, 2011 30 NANOG 51, Miami 

  Revisit the Loopback Alias 
›  if hosts are guaranteed to be on separate l2 segments, VIP can be aliased on the 

real interface 
•  Pro: packets don't get pushed up and down the TCP stack on entry 
•  Con: hosts now must be on different L2 segments; host configuration deviates (more) from 

other VIP configurations; LB configuration increases in complexity 



Future Enhancements: IPv6 
  use Traffic Class field? 
  use Destination Options EH? 
  define new EH? 

January 30, 2011 31 NANOG 51, Miami 



Open Source L3DSR 
  LB vendor support is already there 
  internal process started to open source FreeBSD and Linux kernel 

modules and iptables(8) extension as well as helper tools and 
glue scripts 

  preferred license: BSD 
›  linux bits may require GPL 

  most likely to be hosted on GitHub 

January 30, 2011 32 NANOG 51, Miami 



L3DSR at a glance 
  allows for Direct Server Return Load Balancing across Layer 3 

›  location independence of servers in a VIP 
›  high performance 
›  preservation of clients' source address 

  uses the DSCP field in the IPv4 header to relay information to the 
servers in a VIP 
›  use of DSCP bits reserved for L3DSR cannot be used for QoS 
›  debugging/configuration at times confusing 

  supported by A10, Brocade/Foundry, Citrix 
  server support on FreeBSD and RHEL 

›  servers rewrite destination address of incoming packets based on DSCP values 

  future enhancements include: IPv6 support, port translation, open 
sourcing of kernel modules 

January 30, 2011 33 NANOG 51, Miami 


