
L3DSR – Overcoming Layer 2 Limitations 
of Direct Server Return Load Balancing 

Jan Schaumann, Systems Architect

<jschauma@yahoo-inc.com>!

E2A7 437A 7AB8 6EA1 7E1D!

F6DC BF09 CDC9 E157 FAB8!



Traditional or L2 DSR 
  "Direct Server Return" also known as: 

›  "Direct Routing" 
›  "SwitchBack" (Foundry/Brocade) 
›  "nPath" (F5) 

  General packet flow: 
›  clients send requests to a Virtual IP (VIP) served by the LoadBalancer 
›  LB determines real server to forward the request to 
›  LB performs MAC Address Translation (MAT) 
›  server responds directly to client, bypassing the LB 

January 30, 2011 2 NANOG 51, Miami 



  Client to LB: 
›  Source IP: 1.1.1.1 
›  Destination IP: 2.2.2.2 
›  Destination MAC: AAAA 

  LB to Server: 
›  Source IP: 1.1.1.1 
›  Destination IP: 2.2.2.2 
›  Destination MAC: BBBB 

  Server to Client: 
›  Source IP: 2.2.2.2 
›  Destination IP: 1.1.1.1 
›  Destination MAC: default gateway's MAC 

Traditional or L2 DSR 

January 30, 2011 3 NANOG 51, Miami 



  Layers are independent (L2 does not care about L3 information) 

  LB and server both have VIP configured 
  server must not answer ARP for VIP 
  service must bind to VIP 

›  service may also have to bind to real IP for health checking 

  LB and server need to be on the same L2 network segment 

Traditional or L2 DSR 

January 30, 2011 4 NANOG 51, Miami 



  Clients' source addresses are preserved 
›  Yahoo! is very interested in knowing the source address of any incoming requests 

Advantages of L2 DSR 

January 30, 2011 5 NANOG 51, Miami 

  Performance 
›  LB only handles inbound packets 
›  typical inbound traffic is much smaller than outbound traffic (about 1:8 for typical 

Yahoo! traffic) 
›  normal DSR LBs at Y! can have hundreds of VIPs across hundreds of real servers, 

handling multiple Gbps of inbound traffic (tens of Gbps of outbound traffic) 

›  SNAT loses the clients' addresses 

›  SNAT forces all traffic through the LB 



  server cannot directly respond to ARP requests for VIP 
›  configuration of loopback aliases (or alias on interface marked as "down") 

Limitations of L2 DSR 

January 30, 2011 6 NANOG 51, Miami 

  health checking requires additional configuration 
›  service on VIP on loopback alias 
›  service on VIP for health check (some models) 

  Port translation not possible 
›  port selection is protocol dependent, so does not happen on Layer 2 

  LB and all servers need to be on the same L2 network segment 
›  physical location of servers behind VIP restricted 
›  flexibility within datacenter limited 



  instability on very large (10K+ hosts) networks 

  STP designs require an active/backup design for rack uplinks – we 
wanted active/active for any single rack switch 

  if we require multiple L2 domains (for stability), hosts in different L2 
domains cannot participate in the same VIP 
›  physical location of servers behind VIP restricted 
›  flexibility within datacenter limited 

What's "wrong" with L2 anyway? 

January 30, 2011 7 NANOG 51, Miami 



  Server needs to know 
›  client source address 
›  VIP address for which the request was made 

  LB needs to 
›  tell the server behind the VIP the source address of the client 
›  send request to an IP different from the VIP 

How do we get from L2 to L3? 

January 30, 2011 8 NANOG 51, Miami 

›  tell the server the original destination address (ie the VIP to serve) 



A simple matter of communication... 

January 30, 2011 9 NANOG 51, Miami 

  Where can we put extra information? 
  Options considered: 

›  Generic Routing Encapsulation (GRE) 
›  IP-in-IP tunnelling (RFC1853) 

  Main Issues: Path MTU Discovery 
›  IP/IP and GRE add 24 bytes overhead 
›  largest packet in tunnel would be 1476 bytes => PMTUD issues from client to LB 
›  changing server side MTU to 1524 impacts all traffic on that host, may cause 

PMTUD issues from server to client 



A simple matter of communication... 

January 30, 2011 10 NANOG 51, Miami 

  Where can we put extra information? 
  Options considered: 

›  Generic Routing Encapsulation (GRE) 
›  IP-in-IP tunnelling (RFC1853) 



Something-something of Service 
  TOS, QoS, COS – none used in Yahoo!'s environment 

January 30, 2011 11 NANOG 51, Miami 

  map these bits to VIPs: 
›  "DSCP 010001 means original destination address was 1.1.1.2" 
›  010001 => 1.1.1.2 
›  ... 

  let's reserve a few just in case... 
  use of bits 010XXX – 101XXX yields 40 values (per LB) 

 => we have 6 completely unused bits 

  we don't have to send the full address 
›  server just needs to derive the full address from the information 

we relay 



  LB and servers need to agree on DSCP <=> VIP mapping 

L3DSR Packet Flow 

January 30, 2011 12 NANOG 51, Miami 

  LB sets DSCP bit according to known mapping 
  LB changes destination address to the server's (real) IP, keeps client's 

source address 

  Server checks DSCP bit 
  Server rewrites destination address according to known mapping to 

appropriate VIP 
  VIP configured on loopback alias as with L2DSR 
  Server responds to client's source address from VIP 



L3DSR Packet Flow 

January 30, 2011 13 NANOG 51, Miami 

  Incoming: 
›  Client Source IP: 144.100.10.1!
›  Client Destination IP: 198.18.0.250!
›  DSCP: 0x0 (explicitly cleared) 

  LB to Server: 
›  Source IP: 144.100.10.1!
›  Destination IP: 74.80.1.1!
›  DSCP: 0x4!

  Server to Client: 
›  Source IP: 198.18.0.250!
›  Destination IP: 144.100.10.1!



Hardware Vendor Support 

January 30, 2011 14 NANOG 51, Miami 

  A10 AX3200 >= 2.2.5 
  Brocade ADX Series >= 12.1d 
  Brocade/Foundry ServerIron 450 

›  M7 and JetCore blades 
›  >= 10.2.01p 

  Citrix Netscaler running 8.x, 9.x 



slb template port dscp_port_7!
   dscp 7!
!!
slb server hostname.yahoo.com 10.128.9.31!
   port 80 tcp!
      template port dscp_port_7!
!!
slb service-group vip1.yahoo.com:80 tcp!
   health-check status.html!
   member hostname.yahoo.com:80!
!!
slb virtual-server vip1.yahoo.com 10.128.8.45!
   port 80 tcp!
   service-group vip1.yahoo.com:80!
   no-dest-nat!

Hardware Vendor Support – A10 

January 30, 2011 15 NANOG 51, Miami 



server remote-name hostname.yahoo.com 10.128.9.35  !

 port default disable!

 port http!

 port http url "GET /index.html"!

!!

server virtual vip1.yahoo.com 10.1.128.49!

 tos-marking 7 hc-l3-dsr!

 port default disable!

 port http!

 bind http hostname.yahoo.com http!

! !

Hardware Vendor Support – Brocade 

January 30, 2011 16 NANOG 51, Miami 



add lb monitor index.html HTTP -respCode 200 !\!

  -httpRequest "GET /index.html" -interval 7 !\!

  -retries 2!

add server hostname.yahoo.com 10.128.9.35!

add service hostname.yahoo.com-80            !\!

  hostname.yahoo.com ANY 80                  !\!

  -usip YES -cip DISABLED!

bind lb monitor index.html hostname.yahoo.com-80!

add lb vserver vip1.yahoo.com-80 ANY         !\!

  10.128.8.44 80 -lbmethod ROUNDROBIN ! !\!

  -m TOS -tosId 7!

bind lb vserver vip1.yahoo.com-80            !\!

  hostname.yahoo.com-80!

Hardware Vendor Support – Citrix 

January 30, 2011 17 NANOG 51, Miami 



  Yahoo! developed kernel module providing a simple single-purpose 
packet filter 

  enable destination-address rewriting via sysctl(8)!
  originally written by John Baldwin, now maintained by Jan 

Schaumann 
  a whooping 256 lines of code (including comments etc.) 
  support version 6 and above (i386/amd64) 

Server OS Support – FreeBSD   

January 30, 2011 18 NANOG 51, Miami 



$ sudo /sbin/kldload dscp_rewrite!

Server OS Support – FreeBSD   

January 30, 2011 19 NANOG 51, Miami 

$ /sbin/kldstat | grep dscp!

 5    1 0xffffff8000be9000 106000   dscp_rewrite.ko!
$ sudo sysctl -w net.inet.ip.dscp_rewrite.enabled=1!

net.inet.ip.dscp_rewrite.enabled: 0 -> 1!

$ sudo sysctl -w net.inet.ip.dscp_rewrite.7=10.1.128.49!

net.inet.ip.dscp_rewrite.7: 0.0.0.0 -> 10.1.128.49!

$ sudo /sbin/ifconfig lo0 10.1.128.49 netmask 0xffffffff alias!

$ ifconfig -a!

bce0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500!

        options=1bb<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,JUMBO_MTU,VLAN_HWCSUM,TSO4>!

        ether 00:15:c5:e5:4c:69!

        inet 10.128.9.35 netmask 0xffffff00 broadcast 10.128.9.255!

        media: Ethernet 1000baseTX <full-duplex>!

        status: active!

lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> metric 0 mtu 16384!

        inet6 fe80::1%lo0 prefixlen 64 scopeid 0x5!

        inet6 ::1 prefixlen 128!

        inet 127.0.0.1 netmask 0xff000000!

        inet 10.1.128.49 netmask 0xffffffff!



$ ping -c 3 -z 28 10.128.9.35   !

PING 10.128.9.35 (10.128.9.35): 56 data bytes!

64 bytes from 10.1.128.49: icmp_seq=0 ttl=64 time=0.035 ms!

64 bytes from 10.1.128.49: icmp_seq=1 ttl=64 time=0.046 ms!

64 bytes from 10.1.128.49: icmp_seq=2 ttl=64 time=0.045 ms!

--- 10.128.9.35 ping statistics ---!

3 packets transmitted, 3 packets received, 0.0% packet loss!

round-trip min/avg/max/stddev = 0.035/0.042/0.046/0.005 ms!

Server OS Support – FreeBSD   

January 30, 2011 20 NANOG 51, Miami 

15:25:59.822743 IP (tos 0x1c, ttl 64, id 11612, offset 0, flags [none], proto ICMP (1), length 
84) 10.128.9.35 > 10.128.9.35: ICMP echo request, id 22133, seq 0, length 64!

15:25:59.822759 IP (tos 0x1c, ttl 64, id 11613, offset 0, flags [none], proto ICMP (1), length 
84) 10.1.128.49 > 10.128.9.35: ICMP echo reply, id 22133, seq 0, length 64!

15:26:00.823815 IP (tos 0x1c, ttl 64, id 11617, offset 0, flags [none], proto ICMP (1), length 
84) 10.128.9.35 > 10.128.9.35: ICMP echo request, id 22133, seq 1, length 64!

15:26:00.823831 IP (tos 0x1c, ttl 64, id 11618, offset 0, flags [none], proto ICMP (1), length 
84) 10.1.128.49 > 10.128.9.35: ICMP echo reply, id 22133, seq 1, length 64!

15:26:01.835959 IP (tos 0x1c, ttl 64, id 11621, offset 0, flags [none], proto ICMP (1), length 
84) 10.128.9.35 > 10.128.9.35: ICMP echo request, id 22133, seq 2, length 64!



  Yahoo! developed kernel module and iptables(8) plugin to allow 
mangling of the DSCP field 

  enable destination-address rewriting via iptables(8)!
  originally written and now maintained by Quentin Barnes 
  another whooping ~200 lines of code or so 
  supports RHEL 4, 5 (i386/amd64; xenU) 

Server OS Support – RHEL   

January 30, 2011 21 NANOG 51, Miami 



$ sudo iptables -t mangle -A PREROUTING -m dscp –dscp 7 -j DADDR --set-daddr=10.128.8.46 !

Server OS Support – RHEL   

January 30, 2011 22 NANOG 51, Miami 

$ lsmod | grep ipt!

iptable_mangle          4545  1!

ipt_DADDR               4352  5!

ipt_dscp                3137  5!

ip_tables              21825  3 iptable_mangle,ipt_DADDR,ipt_dscp!

$!$ sudo iptables -t mangle -L!

Chain PREROUTING (policy ACCEPT)!

target     prot opt source      destination!

DADDR      all  --  anywhere    anywhere      DSCP match 0x1c DADDR set 10.128.8.46!

[...]!

$ sudo ifconfig lo:1 10.128.8.46 netmask 255.255.255.255!

$ ifconfig -a | more!

eth0      Link encap:Ethernet  HWaddr 00:11:43:E1:DA:F0!

          inet addr:10.128.9.31  Bcast:10.128.9.255  Mask:255.255.255.0!

          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1!

lo:1      Link encap:Local Loopback!

          inet addr:10.128.8.46  Mask:255.255.255.255!

          UP LOOPBACK RUNNING  MTU:16436  Metric:1!



$ ping -c 3 –Q 28 10.128.9.31!

PING 10.128.9.31 (10.128.9.31) 56(84) bytes of data.!

64 bytes from 10.128.8.46: icmp_seq=0 ttl=64 time=0.084 ms!

64 bytes from 10.128.8.46: icmp_seq=1 ttl=64 time=0.106 ms!

64 bytes from 10.128.8.46: icmp_seq=2 ttl=64 time=0.112 ms!

--- 10.128.9.31 ping statistics ---!

3 packets transmitted, 3 received, 0% packet loss, time 2000ms!

rtt min/avg/max/mdev = 0.084/0.100/0.112/0.016 ms, pipe 2!

Server OS Support – RHEL   

January 30, 2011 23 NANOG 51, Miami 

07:57:27.121040 IP (tos 0x1c, ttl  64, id 0, offset 0, flags [DF], proto 1, length: 84) 
10.128.9.32 > 10.128.9.31: icmp 64: echo request seq 0!

07:57:27.121049 IP (tos 0x1c, ttl  64, id 7562, offset 0, flags [none], proto 1, length: 84) 
10.128.8.46 > 10.128.9.32: icmp 64: echo reply seq 0!

07:57:28.120800 IP (tos 0x1c, ttl  64, id 0, offset 0, flags [DF], proto 1, length: 84) 
10.128.9.32 > 10.128.9.31: icmp 64: echo request seq 1!

07:57:28.120807 IP (tos 0x1c, ttl  64, id 7563, offset 0, flags [none], proto 1, length: 84) 
10.128.8.46 > 10.128.9.32: icmp 64: echo reply seq 1!

07:57:29.120608 IP (tos 0x1c, ttl  64, id 0, offset 0, flags [DF], proto 1, length: 84) 
10.128.9.32 > 10.128.9.31: icmp 64: echo request seq 2!

07:57:29.120616 IP (tos 0x1c, ttl  64, id 7564, offset 0, flags [none], proto 1, length: 84) 
10.128.8.46 > 10.128.9.32: icmp 64: echo reply seq 2!



  need to be able to check to see if the iptables plugin/kernel module is 
in place and working correctly – otherwise traffic may get blackholed 

L3DSR Health Checking 

January 30, 2011 24 NANOG 51, Miami 

  LB sends: 
›  Source IP: <LB IP> Dest IP: <Server IP> 
›  Healthcheck URL "GET /index.html" 
›  DSCP: 7 

  Server replies: 
›  Source IP: <VIP IP> Dest IP: <LB IP> 
›  Status code "200 OK" 

  due to destination address rewriting, source/destination on the LB do 
not match 



L3DSR Benefits 
  Location Independence of servers within the datacenter 

›  we can physically move hosts across different Layer 2 segments 
›  we can rebuild a host on a different Layer 2 segment, then use it to replace broken 

hosts 
›  we can deploy new hosts to add to existing VIPs without concern for the physical 

location / IP allocation within same Layer 2 segment 

January 30, 2011 25 NANOG 51, Miami 

  Preservation of clients' source address 
  DSR Performance 

›  up to 8x the number of VIPs per LB compared to other L3 techniques 



L3DSR Drawbacks 
  use of DSCP bits reserved for L3DSR cannot simultaneously be used 

for QoS 

  need to keep track of the DSCP <=> VIP mappings 
›  extend the database storing VIP settings 
›  update any tools used to turn centrally stored values into host configuration 

  increased complexity 
›  host configuration now requires additional kernel modules and configuration steps 
›  new code and new configuration options on load balancers 
›  more places where things can go wrong 

January 30, 2011 26 NANOG 51, Miami 



L3DSR Caveats 

January 30, 2011 27 NANOG 51, Miami 

22:43:43.855888 IP (tos 0x1c, ttl 64, id 35851, offset 0, flags [none], proto ICMP (1), 
length 84, bad cksum 0 (->251c)!) 10.163.162.14 > 10.163.163.17: ICMP echo request, id 
6179, seq 0, length 64!

22:43:43.856092 IP (tos 0x0, ttl 64, id 16332, offset 0, flags [none], proto ICMP (1), 
length 84) 10.163.163.17 > 10.163.162.14: ICMP echo reply, id 6179, seq 0, length 64!

22:43:44.897346 IP (tos 0x1c, ttl 64, id 35856, offset 0, flags [none], proto ICMP (1), 
length 84, bad cksum 0 (->2517)!) 10.163.161.14 > 10.163.163.17: ICMP echo request, id 
6179, seq 1, length 64!

22:43:43.855888 IP (tos 0x0, ttl  64, id 35851, offset 0, flags [none], proto: ICMP (1), 
length: 84) 10.163.162.14 > 10.163.163.17: ICMP echo request, id 6179, seq 0, length 
64!

22:43:43.856092 IP (tos 0x0, ttl  64, id 16332, offset 0, flags [none], proto: ICMP (1), 
length: 84, bad cksum 0 (->715b)!) 10.163.163.17 > 10.163.162.14: ICMP echo reply, id 
6179, seq 0, length 64!

22:43:44.897346 IP (tos 0x0, ttl  64, id 35856, offset 0, flags [none], proto: ICMP (1), 
length: 84) 10.163.162.14 > 10.163.163.17: ICMP echo request, id 6179, seq 1, length 
64!



A10: 
slb template port dscp_port_7!
   dscp 7!

Brocade: 
server virtual vip1.yahoo.com 10.1.128.49!
 tos-marking 7 hc-l3-dsr!

Citrix: 
add lb vserver vip1.yahoo.com-80 ANY         !\!
  10.128.8.44 80 -lbmethod ROUNDROBIN ! !\!
  -m TOS -tosId 7!

L3DSR Caveats 

January 30, 2011 28 NANOG 51, Miami 



L3DSR Caveats 

January 30, 2011 29 NANOG 51, Miami 

$ ping -c 3 -z 28 10.128.9.35   !

PING 10.128.9.35 (10.128.9.35): 56 data bytes!

64 bytes from 10.1.128.49: icmp_seq=0 ttl=64 time=0.035 ms!

64 bytes from 10.1.128.49: icmp_seq=1 ttl=64 time=0.046 ms!

64 bytes from 10.1.128.49: icmp_seq=2 ttl=64 time=0.045 ms!

--- 10.128.9.35 ping statistics ---!

3 packets transmitted, 3 packets received, 0.0% packet loss!

round-trip min/avg/max/stddev = 0.035/0.042/0.046/0.005 ms!

$!

15:25:59.822743 IP (tos 0x1c, ttl 64, id 11612, offset 0, flags [none], proto ICMP (1), length 
84) 10.128.9.35 > 10.128.9.35: ICMP echo request, id 22133, seq 0, length 64!

15:25:59.822759 IP (tos 0x1c, ttl 64, id 11613, offset 0, flags [none], proto ICMP (1), length 
84) 10.1.128.49 > 10.128.9.35: ICMP echo reply, id 22133, seq 0, length 64!

15:26:00.823815 IP (tos 0x1c, ttl 64, id 11617, offset 0, flags [none], proto ICMP (1), length 
84) 10.128.9.35 > 10.128.9.35: ICMP echo request, id 22133, seq 1, length 64!

15:26:00.823831 IP (tos 0x1c, ttl 64, id 11618, offset 0, flags [none], proto ICMP (1), length 
84) 10.1.128.49 > 10.128.9.35: ICMP echo reply, id 22133, seq 1, length 64!

15:26:01.835959 IP (tos 0x1c, ttl 64, id 11621, offset 0, flags [none], proto ICMP (1), length 
84) 10.128.9.35 > 10.128.9.35: ICMP echo request, id 22133, seq 2, length 64!

DSCP = 7    (configure) 
TOS = 28     (check) 
Hex = 0x1c  (troubleshoot) 



Future Enhancements 
  Port Translation 

›  now possible – we're on Layer 3 
›  may require the server-side kernel module to also rewrite the port of the incoming 

packets 

January 30, 2011 30 NANOG 51, Miami 

  Revisit the Loopback Alias 
›  if hosts are guaranteed to be on separate l2 segments, VIP can be aliased on the 

real interface 
•  Pro: packets don't get pushed up and down the TCP stack on entry 
•  Con: hosts now must be on different L2 segments; host configuration deviates (more) from 

other VIP configurations; LB configuration increases in complexity 



Future Enhancements: IPv6 
  use Traffic Class field? 
  use Destination Options EH? 
  define new EH? 

January 30, 2011 31 NANOG 51, Miami 



Open Source L3DSR 
  LB vendor support is already there 
  internal process started to open source FreeBSD and Linux kernel 

modules and iptables(8) extension as well as helper tools and 
glue scripts 

  preferred license: BSD 
›  linux bits may require GPL 

  most likely to be hosted on GitHub 

January 30, 2011 32 NANOG 51, Miami 



L3DSR at a glance 
  allows for Direct Server Return Load Balancing across Layer 3 

›  location independence of servers in a VIP 
›  high performance 
›  preservation of clients' source address 

  uses the DSCP field in the IPv4 header to relay information to the 
servers in a VIP 
›  use of DSCP bits reserved for L3DSR cannot be used for QoS 
›  debugging/configuration at times confusing 

  supported by A10, Brocade/Foundry, Citrix 
  server support on FreeBSD and RHEL 

›  servers rewrite destination address of incoming packets based on DSCP values 

  future enhancements include: IPv6 support, port translation, open 
sourcing of kernel modules 

January 30, 2011 33 NANOG 51, Miami 


