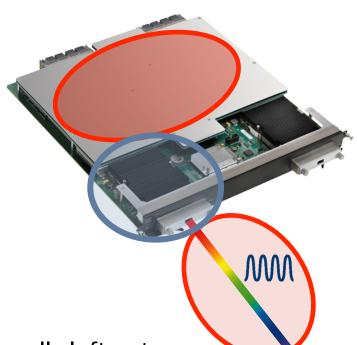

BROCADE


100 GBE AND BEYOND

Greg Hankins <ghankins@brocade.com> NANOG52

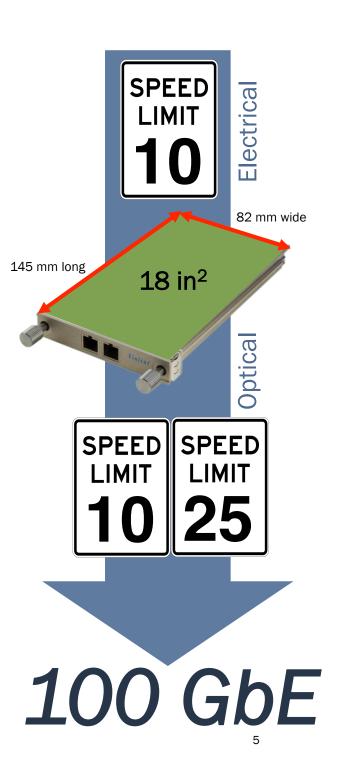
Diagram courtesy of the CFP MSA.

Agenda and What's Covered in This Presentation

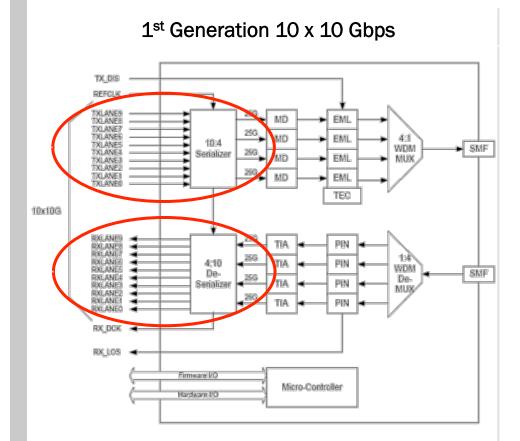
- Ethernet interface technology
 - Overview
 - 28 Gbps Common Electrical Interfaces (CEI)
 - New 100 Gbps Media Modules
 - 100 GbE Developments
 - Beyond 100 GbE...
- Optical technology developments are intentionally left out
 - Go see Drew Perkins' talk tomorrow morning:
 - "Dawn of the Terabit Age: Scaling Optical Capacity to Meet Internet Demand"
- Skipping router packet processing, lookup capabilities and memory architectures
 - Wire-speed 100 GbE is ~149 Mpps, or one packet every 6.7 ns at 64 byte frames
 - Maybe a topic for the next NANOG?

Standards Organizations and You, Revisited

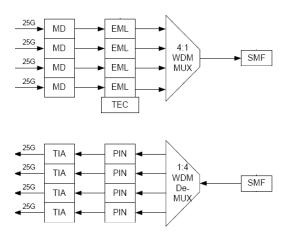
Name	Primary Role (in Context of this Presentation)	Primary Players
Customers	Buy Your Services	
You	Run Networks	
Hardware Vendors	Make Equipment	
	Ethernet Service Definitions, Standards and Certification	Hardware Vendors, Network Operators
	Higher Layer Protocol Standards	Hardware Vendors, Network Operators
IEEE	Ethernet Standards (802.1, 802.3)	
eincits	Fibre Channel Standards (T11)	Component and Hardware Vendors
International Telesammunication Union	Telecom Standards (SG15)	
	Optical Module Standards	Component and Hardware Vendors, Network Operators
SFF Committee	Media Module Standards	Component and Hardware Vendors
OIFF OFFICAL INTERNETWORKING FORUM	Component Interface Standards	Component and Hardware Vendors


Current State of the Industry

- There is already demand for other interfaces beyond the scope of IEEE 802.3ba (June 2010)
- Standard defines a flexible architecture that enables many implementations as technology changes
- New 40 GbE and 100 GbE standards are in progress
 - IEEE 802.3bg defined a 40 GbE serial interface to OTU3/STM-256/OC-768
 - The 2nd generation of 100 GbE will use
 4 x 25 Gbps electrical and optical signaling


Current State of the Industry

- Fundamental 1st generation technology constraints limits higher 100 GbE density and lower cost
- Electrical signaling inside the box
 - 100 Gbps Attachment Unit Interface (CAUI) uses 10 x 10 Gbps
- Optical signaling outside the box
 - 10x10 MSA: 10 x 10 Gbps
 - 100GBASE-LR4 and 100GBASE-ER4: 4 x 25 Gbps
- CFP module size and power consumption



1st Generation vs 2nd Generation 100 GbE

2nd Generation 100 GbE Needs Faster Electrical Signaling

10 Gbps Electrical Signaling and 10:4 Gearbox Adds Complexity, Cost, Space, Power... 2nd Generation 4 x 25 Gbps

25 Gbps Electrical and Optical Signaling

Front Panel Interface Density Trends

Module Form Factor, Throughput and Power

10/40 GhE	1 24 1 2 25 48 3 4	2010 SFP+ and QSFP 640 Gbps, 60 W
	1 2 3 4	2010 CFP 400 Gbps, 80 W
100 GhE	1 2 3 4 5 6 7 8	2013+ CFP2 800 Gbps, 80 W
100	1 20	2013+ 25 Gbps QSFP 2 Tbps, 80+ W
	1 16	2014+ CFP4 1.6 Tbps, 80 W
400 GhE?	1 2	2016+ ?? 800 Gbps, 80 W

Key Industry Initiatives in 2011

Developing Technology for 2nd Generation 100 GbE

100 Gbps Backplane and Copper Study Group

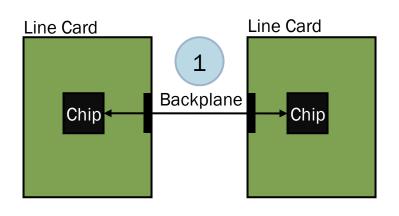
100 Gbps Interfaces Using 4 x 25 Gbps Electrical Signaling

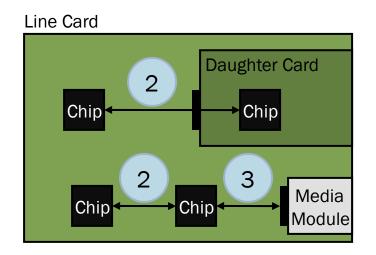
Ethernet Bandwidth Assessment Ad Hoc

Lower Cost 10 x 10 Gbps Optical Modules

Next Generation Pluggable Media Module Form Factors

Agenda


- Overview
- 28 Gbps Common Electrical Interfaces (CEI)
- New 100 Gbps Media Modules
- 100 GbE Developments
- Beyond 100 GbE...


28 Gbps Common Electrical Interfaces (CEI)

- OIF is doing fundamental work on 28 Gbps electrical signaling which will make newer interfaces and pluggable media modules possible
- Lower power, Very Short Reach (VSR) 4" interfaces are being defined for several new applications
 - 1 lane for 32 Gbps Fibre Channel at 28.05 Gbps
 - 4 lanes for 100 GbE at 25.78125 Gbps
 - 16 lanes for 400 GbE at 25.78125 Gbps?
- CEI-28G-VSR is approaching technical stability, and is expected to be finished in January 2012

25 Gbps and 28 Gbps Common Electrical Interfaces (CEI)

- 1. Backplane: CEI-25G-LR 30"
- 2. Chip to chip: CEI-28G-SR 12"
- Chip to module: CEI-28G-VSR 4"
 (used by 2nd generation 100 GbE media modules)

Agenda

- Overview
- 28 Gbps Common Electrical Interfaces (CEI)
- New 100 Gbps Media Modules
- 100 GbE Developments
- Beyond 100 GbE...

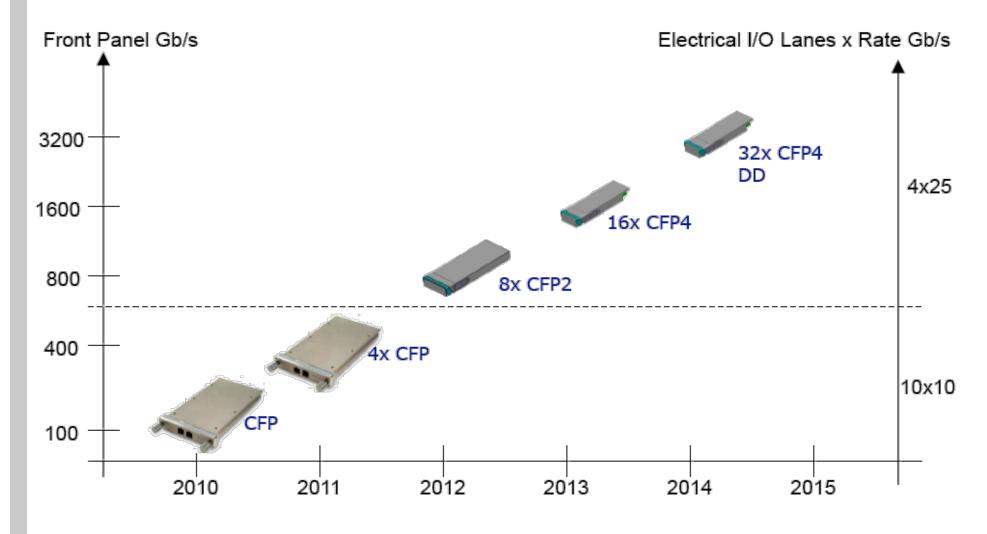
10 Gbps Module Review – 3 Generations of 10 GbE Over 7 Years

Each Module Increased Density, While Reducing Cost and Power

	1 st Generation	2 nd Generation		3 rd Generation		
Module Name (Images not to Scale)	300PIN MSA	XENPAK	ХРАК	X2	XFP	SFP+
Approximate Module Dimensions (Length x Width to Scale)						
Front Panel Density	1	4	8	8	16	48
Electrical Interface	XSBI	XAUI	XAUI	XAUI	XFI	SFI
Electrical Signaling	16 x 644 Mbps	4 x 3.125 Gbps	4 x 3.125 Gbps	4 x 3.125 Gbps	1 x 10.3125 Gbps	1 x 10.3125 Gbps
Release Year	2002	2003	2004	2004	2006	2009

Module images courtesy of Finisar.

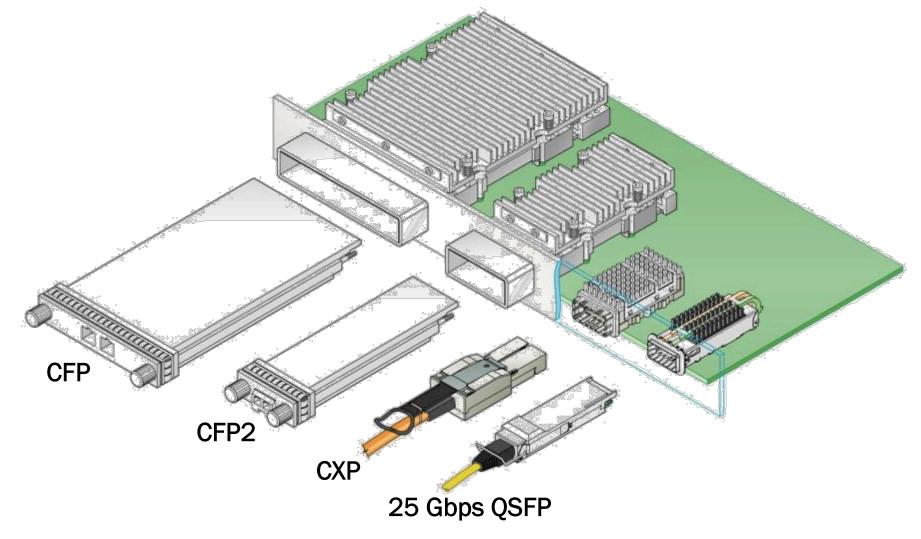
100 Gbps Module Evolution


Two Generations of 100 GbE Expected to Take 5 Years

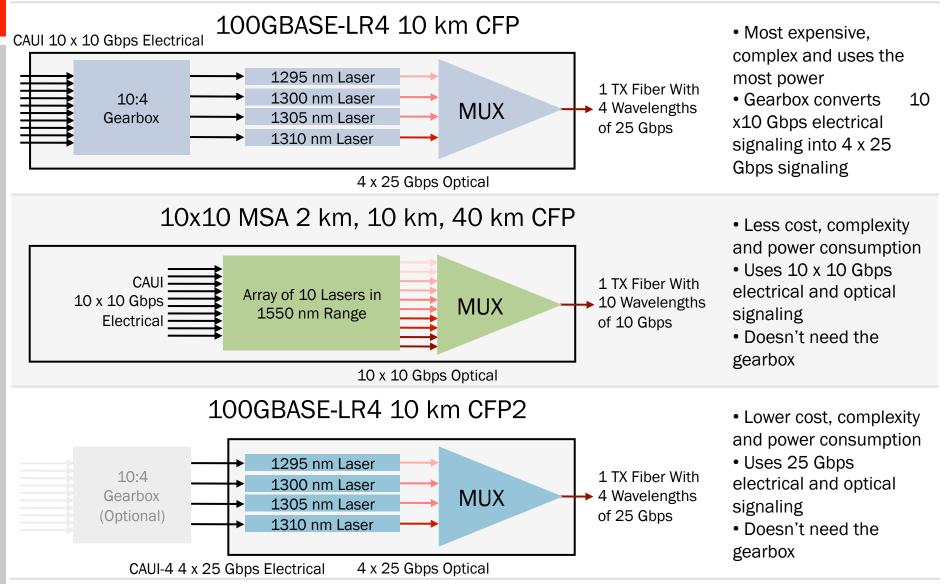
	1 st Generation		2nd Generation			
Module Name (Images not to Scale)	A STATE	STA -			- And	
	CFP	CXP	25 Gbps QSFP	CFP2	CFP4	
Approximate Module Dimensions (Length x Width to Scale)						
Front Panel Density	4	16	22 - 44	8	16 - 32	
Electrical Interface	CAUI	CPPI	CPPI-4	CAUI-4	CPPI-4	
Electrical Signaling (Gbps)	10 x 10	10 x 10	4 x 25	4 x 25	4 x 25	
Media Type	SMF	Twinax, MMF	MMF/SMF?	SMF	SMF	
Advantages	Long Reach, High Power Dissipation	Small Size, Designed for Passive Cabling	Highest Density, Established Form Factor	Long Reach, Higher Density	Highest Density, Smaller Size,	
Disadvantages	Too Big	Short Reach, Too Small	Limited Power Dissipation and Reach	Bigger Size	Unproven Form Factor (vs. QSFP)	
Availability (Subject to Change)	2010	2010	2011 (InfiniBand) 2013+ (Ethernet)	2013+	2014+	

CFP and CXP images courtesy of Finisar, QSFP image courtesy of the SFF Committee, SFP2 and SFP4 images courtesy of the CFP MSA.

100 Gbps CFP Module Evolution


Module Form Factor vs. Front Panel Density

Source: http://www.cfp-msa.org/Documents/CFP_MSA_baseline_specifications.pdf


100 Gbps Module Evolution

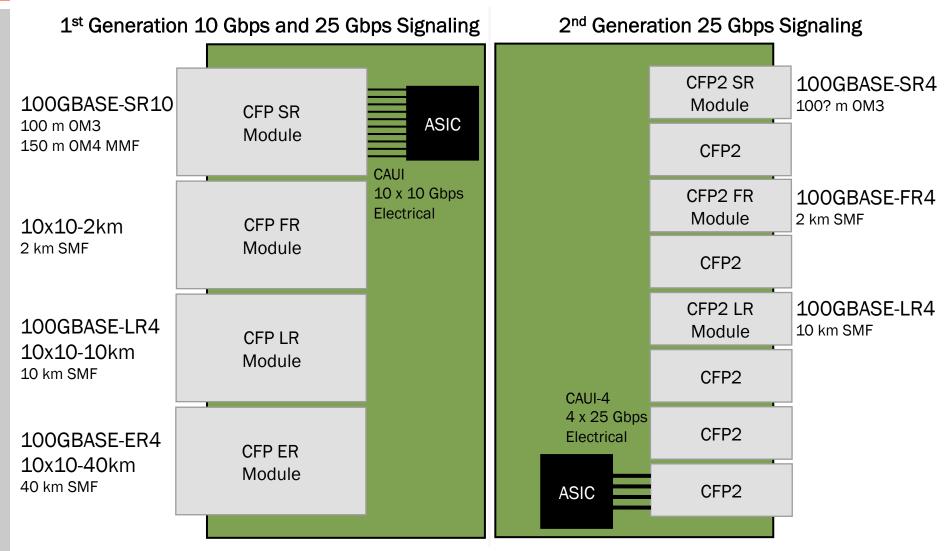
Graphical View of Module Form Factors

100 GbE Module Technologies Compared

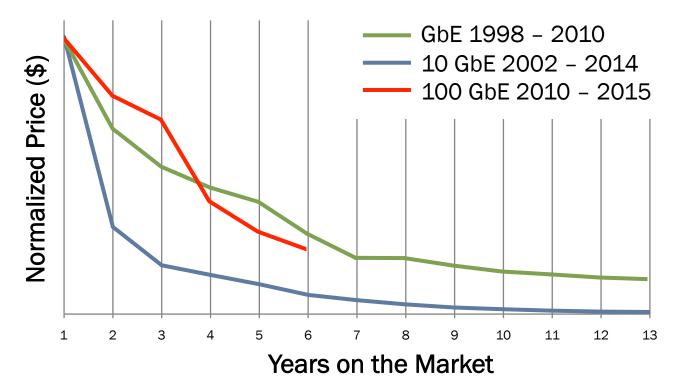
Transmit Side of Module

Agenda

- Overview
- 28 Gbps Common Electrical Interfaces (CEI)
- New 100 Gbps Media Modules
- 100 GbE Developments
- Beyond 100 GbE...


Recent 100 GbE Developments

- 2nd generation projects based on 4 x 25 Gbps electrical signaling have started
- New IEEE Copper Study Group was approved in November, 2010
 - 100GBASE-KR4: 4 x 25 Gbps over backplane
 - 100GBASE-CR4: 4 x 25 Gbps over copper cable
 - <u>http://www.ieee802.org/3/100GCU/index.html</u>


Recent 100 GbE Developments

- 10x10 MSA is growing and working on several projects
 - Up to 25 members including AMS-IX, Facebook and Google
 - Finishing 10x10-10km and 10x10-40km standards, expected to be approved in July, 2011
 - Investigating muxing 8 bands of 40 km links to carry 8 x 100 Gbps over a single fiber pair
- IEEE is expected to start work in July, 2011 to define new interfaces that are expected to be available in 2013+
 - 100GBASE-SR4: 4 x 25 Gbps over OM3 MMF
 - 100GBASE-FR4: 4 x 25 Gbps over SMF for 500 m 2 km
 - CAUI-4: electrical signaling to the CFP2
 - CPPI-4: electrical signaling to the 25 Gbps QSFP and CFP4
 - 25 Gbps QSFP and CFP2/4 will be competing for the highest front panel density

Putting it All Together – 100 GbE Line Card Architectures

Ethernet Average Selling Price (ASP) Trends

- Prices of previous Ethernet generations fell significantly during the first few years on the market
- Already seeing a similar trend as 1st generation 100 GbE volume increases, expect 2nd generation 100 GbE to deliver significantly lower prices

1st Generation IEEE 1st Generation 10x10 MSA 2nd Generation IEEE

100 GbE Technology Summary

100 m 1? m 5+? m 7 m 100? m OM3. **Physical Layer** 2 km 10 km 40 km Copper Back-OM3 150 m Copper SMF SMF SMF Reach plane Cable Cable MMF OM4 MMF 100GBASE 100GBASE 100GBASE 100GBASE 100GBASE 100GBASE 10x10-10k 100GBASE 10x10-40k 100GBASE Name 10x10-2km -KR4 -CR4 -CR10 -SR10 -SR4 -FR4 -LR4 m -ER4 m 2010 2010 2010 2010 Possible Possible Possible 2011 Possible Future Future Standard Status IEEE IEEE IEEE IEEE Future IEEE Future IEEE Future IEEE 10x10 MSA Future IEEE 10x10 MSA 10x10 MSA 802.3ba 802.3ba 802.3ba 802.3ba 2nd 2nd 2nd Generation 2nd 1st 1st 1st 1st 1st 1st 1st Electrical 4 x 25 4 x 25 4 x 25 10 x 10 10 x 10 4 x 25 10 x 10 Signaling (Gbps) **Media Signaling** 4 x 25 4 x 25 10 x 10 4 x 25 10 x 10 10 x 10 4 x 25 10 x 10 4 x 25 10 x 10 4 x 25 (Gbps) MPO MPO **Duplex** Duplex Duplex Duplex Duplex Duplex Twinax Media Type Backplane Twinax MMF MMF SMF SMF SMF SMF SMF SMF 25 Gbps 25 Gbps 25 Gbps QSFP, QSFP, CXP, QSFP, Media Module CXP CFP CFP CFP CFP CFP Backplane CFP2, CFP2, CFP CFP2, CFP4 CFP4 CFP4 2010 Q3 Q3 Q1 Availability 2013+ 2013+ 2010 2013+ 2013+ 2012 2010 2011 2011 2011 (CFP2 in 2013+)

Agenda

- Overview
- 28 Gbps Common Electrical Interfaces (CEI)
- New 100 Gbps Media Modules
- 100 GbE Developments
- Beyond 100 GbE...

Bandwidth Requirements Projection

All Solutions are Good, Fast, or Cheap – Pick Any Two

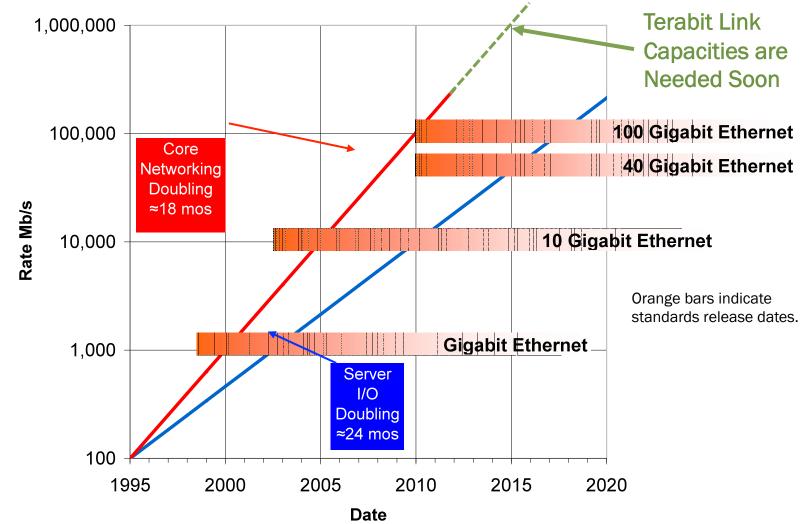
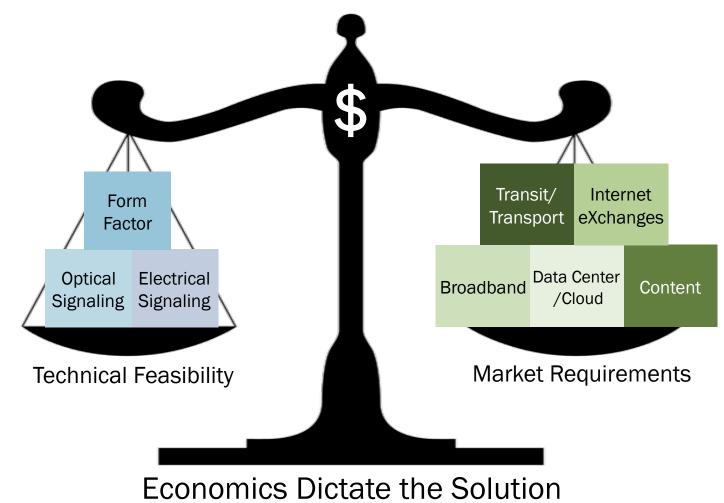



Diagram source: http://www.ieee802.org/3/hssg/public/nov07/HSSG_Tutorial_1107.zip

Beyond 100 GbE: Industry Challenges

2nd Generation 100 GbE and Higher Speeds

IEEE Provides an Open Industry Forum to Make Decisions

IEEE Ethernet Standards Timelines

- 8 years between 10 GbE and 100 GbE standards
- We need to start immediately in order to finish a new Ethernet speed standard by 2016

Diagram source: http://www.euro-ix.net/download/48/948

IEEE Ethernet Bandwidth Assessment Ad Hoc

- Laying groundwork and investigating industry interest for the next Ethernet speed
 - Evaluate Ethernet wireline bandwidth requirements
 - Provide data and reference material to the IEEE
 - Gather information only, will not make a recommendation
- Web page:

http://www.ieee802.org/3/ad_hoc/bwa/index.html

• Mailing list:

http://www.ieee802.org/3/ad_hoc/bwa/reflector.html

IEEE Ethernet Bandwidth Assessment Ad Hoc

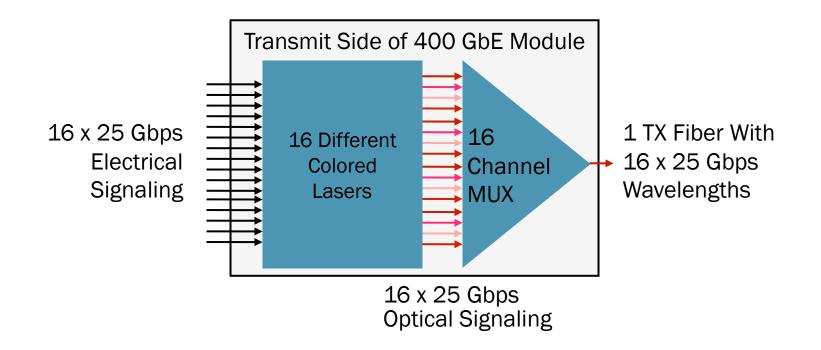
- Network operator input is needed on future requirements
 - Speed, density, distance, cost, topology, anything really
- Presentations can be given on conference calls or at meetings, schedule is opportunistic
- Please get involved... this means you!!
- Request for data :

http://www.ieee802.org/3/ad_hoc/bwa/public/anslow_01a_0411.pdf

• Ad Hoc Chair contact:

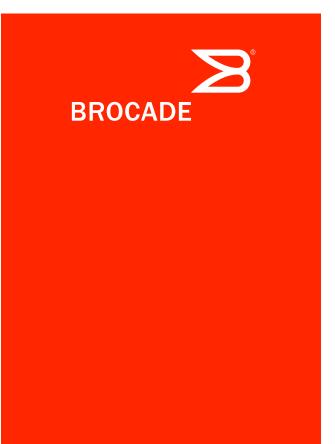
John D'Ambrosia, <<u>jdambrosia@ieee.org</u>>

Future 100 GbE Projects


- In the short term, 4 x 25 Gbps electrical and optical interfaces will keep the IEEE 802.3 Working Group busy for 2+ years
- 100 GbE serial is still not feasible in the near future
 - 25 Gbps signaling is challenging
 - We'll get a better idea of what is possible as 25 Gbps technology matures
- 3rd generation 100 GbE is likely to be developed several years from now

Next Higher Speed Ethernet 250 GbE, 300 GbE, 400 GbE, or TbE?

- Using 10 x 25 Gbps signaling the next speed could be 250 GbE
 - The industry wants a larger jump
- 12 x 25 Gbps signaling matches the number of fibers in a high density MMF cable for 300 GbE
 - Unpopular too
- The likely candidate for the next speed is 400 GbE using 16 x 25 Gbps signaling
 - 16 x 25 Gbps wavelengths can be easily muxed/demuxed onto one SMF
 - MMF solutions would need 32 fibers in a high density cable MPO/MTP assembly
 - Evolution to 10 x 40 Gbps signaling
- TbE is simply impractical in the near future
 - 40 x 25 Gbps lanes in and 40 x 25 Gbps lanes out would make a gigantic media module
 - 40 Gbps serial lanes aren't expected to be economical until after 2016, and will take considerable work as electrical losses grow exponentially with super high frequency signaling



• The 400 GbE module could be 16 channels wide and would be larger than the current 100 GbE CFP

Summary

- The 1st generation of 100 GbE uses 10x10 Gbps electrical lanes and large CFP media modules
- The 2nd generation of 100 GbE will use 4x25 Gbps electrical lanes and smaller CFP2/CFP4/25 Gbps QSFP modules
- Industry is working on 2nd generation 100 GbE for the next few years
- 400 GbE work may start in 2013+ and could finish by 2016+
- TbE is currently technically and economically unfeasible until 40 Gbps electrical lanes are defined after 2013 with a possible standard following many years later

Questions?

