The Best of OARC25

Paul Ebersman
OARC Board
What’s OARC

• The DNS Operations, Analysis, and Research Center

• Five key functions
 – Information Sharing
 – Operational Characterization
 – Workshop
 – Analysis
 – Tools and Services
OARC's Value in Action

- Gathered real-time data during end-2015/ early-2016 attacks
- Post-incident DITL-style upload of attack PCAP from H and K root (thank you !)
- Provided co-ordination resources to root-ops
- Forums for analysis/discussion of what happened, including closed member session at OARC24 workshop
OARC 25

• Just finished yesterday
• Two days of presentations from operators and researchers
 – TLDs, Developers, Academia
• 130 registered attendees
• 68 different organizations
Migrating .CZ to Elliptic Curves

• Going to where no ccTLD has gone before

• Why
 – Smaller responses and zone
 – Testing the algorithm rollover process

• How
 – Measurement experiment
 – Controlled migration of child zones
 – Migrate the parent
Migrating .CZ to Elliptic Curves

• Troubles
 – 6% of users can do RSA but no ECDSA validation (according to APNIC)
 – Communication, communication, communication
 – Measurement widget: IPv6, DNSSEC, Speed

• Finally
 – .CZ will migrate when IANA is ready
 – Public aware enough
Inter-operator transfer of signed TLDs

• Two signed gTLDs operator transfer
• Carefully planned, lots of steps
• RFC 6781
 – Assumes operators can produce slightly different zones
 – Not true when zone is produced from a backend
• A new IETF document will be produced with guidance to operators
Pre-deployment DNS Testing

• DNSviz now added pre-deployment tests
 – For domains not yet delegated
 – By running tests directly on specified addresses
 – Or running a limited instance of DNS server to answer
Anycast Latency: How many sites are enough

• Why Anycast
 – Latency, DDoS defense, collaboration

• Does it work?
 – Ideally divide the Internet into catchment areas
 – But routing is hard

• How it was measured
 – RIPE ATLAS probes against C, F, K, and L-root
 – Optimal possible latency and catchment areas
Anycast Latency

• Results:
 – Median latency generally good
 – Absolute latency nearly optimal
 – Routing policy adds some penalty
 – Location matters, specially to the tail
 – 12 instances provides good latency
 • More helps with the tail, resilience and collaboration
A study of privacy and anonymity in the DNS

• Pitiful DNS privacy
 – Only query content is protected by encryption

• Proposed techniques for privacy
 – Message padding
 – Message interleaving
 – Alter message timing by introducing artificial delay

• Proposed techniques for anonymity
 – Query chaffing
Exploring CVE-2015-7547

• So far attacks are directed to servers, or try to trick clients
• Exploitation of GLIB C bug
• Attack on the client, requires 3 conditions
 – Trigger buffer resize, force partial retry, deliver payload
 – If payload is delivered, smash the stack
• Particularly dangerous for IoT
On the search for resolvers

• Passively detect resolvers’ source address from authoritative DNS data using machine learning

• Motivation: determine which clients could be eligible for whitelisting, or special consideration

• Supervised/unsupervised learning

• Resolvers follow a distinctive traffic pattern and tend to be “sticky”
Rolling the Root Zone DNSSEC KSK

• If you do DNSSEC validation, need to be aware

• Key dates
 – October 27 2016. Generate the new root KSK
 – February 2017: New KSK operationally ready
 – July 11 2017: New KSK added to the root zone
 – October 11 2017, New KSK signs root zone DNSKEY
 – January 11 2018, old KSK revoked

• Rollover will follow RFC 5011
 – If operating correctly, trust anchor will rollover automatically
 – If not manual intervention will be needed
Testing SLD nameservers

• Domains from gTLD zones: 186M
 – Served by 3.5M nameservers
 – Many glue records using questionable addresses
 – Once resolved, nameservers are distributed across 1.5M addresses
 – Around 300,000 unique /24s at least host one nameserver
 • Around 240,000 /24’s host at least two
 – Looking at the last octet, .2, .3, .4, .5, .10 and .11 are twice as common as the typical octet
 – ~6.3% of the addresses are open to recursion
The hunger for AAAA

• A ccTLD noted a sudden increase in AAAA for labels without associated AAAA
• It costs money when you are billed by the query
• Using a Big Data platform where able to investigate into the past, detect the main source, produce a report and have it fixed.
• This may affect other operators out there, including ccTLDs
PCAP-TO-HDFS

• CIRA built a real-time platform for DNS traffic analysis for .CA and their DNS anycast service
• Previous solutions not good enough and not scalable
• Hadoop + Flume + Impala + Actor-based concurrency
• Some experiments with Machine Learning
Domain like an Egyptian

- Verisign IDN supports Egyptian Hieroglyphs
- Register a domain – not all registrars support it
- Set up a nameserver – using punycode
- Client requires font with hieroglyphs
- http://www.xn--5o7dx5d.net/
What to do with SERVFAIL

• On Aug 3, wd2go.com (cloud based storage service) disappeared.
• This causes a lot of stress to resolvers due to SERVFAIL and retries
• Using a lab with different resolver implementation to determine impact
 — Different implementations, different times for SERVFAIL cases
• Client code should have mitigation mechanism for SERVFAIL errors
Yeti DNS: The first experiments

- Yeti DNS: live root DNS server system testbed
- Three experiments so far
 - MZSK: Multiple ZSK
 - Caused troubles with IXFR, needed AXFR
 - BGZSK: Big ZSK (before Verisign announcement)
 - No surprises
 - KROLL: KSK Roll
 - Bumpy due to timers.
 - BIND 9 views problem
Anycast vs DDoS

• DDoS are bad and getting worse
• One attack hit some of the root servers on Nov 30
• During good times anycast keeps traffic contained
• But under attack, what’s the best strategy?
 – Keep the site running? Switch to nodes with more capacity? Do nothing?
Anycast vs DDoS

• Summary of the attack
 – 34 GB/s aggregated

• RIPE ATLAS used as vantage points to measure loss
 – Site flips from routing changes
 – Collateral damage due to shared sites in some cases
Getting DNSSEC Root TA securely

• Pure Python code
• Minimal external dependencies
• Fetch file, validate signature, generate in right format
• https://github.com/kirei/dnssec-ta-tools
ENT was here!

• In May 2016, the National Security Agency of France reported broken validation for gouv.fr

• All instances of the same anycasted nameservers caused problems: NSD

• .fr zone error free
 – The problem was a combination of ENT name subspace with no signed subzones, NSEC3+Opt-out, BIND for signing, NSD as authoritative

• Still fails with Google DNS
 – Workaround was to introduce a TXT to convert ENT into Non-ENT
When “others” measure the DNS

• When someone is looking for alternatives to host DNS, who to ask?
 – Mailing list? Search Engine? Colleague recommendation?

• Multiple services measuring the DNS
 – Sometimes with dubious methodologies
 – Same providers get wildly different rankings depending on who’s measuring them!
 – Failures accounted differently, saturated path skewing results

• Seek for Guidance
For more information

https://www.dns-oarc.net