BGP-EVPN for the Data Center and L3 DCI

Mayur Shetty (mashetty@cisco.com), Pratima Kini (pkini@cisco.com)

November 30, 2015
Agenda

• What is EVPN?
• What problems does VXLAN solve?
• What problems does BGP EVPN solve?
• Overview of BGP EVPN Route Types and associated use cases
 • Host IP/MAC distribution
 • IP Prefix route
• Layer-3 DCI
 • L3 handoff between VXLAN-EVPN and MPLS-L3VPN to extend the layer-3 network connectivity across Data Centers over a WAN
What is E-VPN?

• Ethernet VPN (EVPN) – connect a group of customer sites using a virtual bridge.
 • Treat MAC addresses as routable addresses and distribute them in BGP
 • Uses Multi-protocol BGP
 • Initially started as next generation L2VPN solution for service provider networks

• Evolution of EVPN
 • Data center use cases
 • Multi-tenancy with virtualized hosts
 • Support of VXLAN and NVGRE encapsulations
 • Integrated routing and bridging
 • Support exchange of IP addresses and IP prefixes

• Status of EVPN
 • Standardization effort - IETF L2VPN work group
 • Multi-vendor support – core set of drafts co-authored by engineers from Cisco, Juniper, Alcatel-Lucent, Verizon, ATT, Bloomberg.
 • BGP MPLS based EVPN is RFC 7432 and extensions for DC is currently in draft stages.
What problems does VXLAN solve?

<table>
<thead>
<tr>
<th>Customer Needs</th>
<th>VXLAN Enables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any workload anywhere – VLANs limited by L3 boundaries</td>
<td>Any Workload anywhere- across Layer 3 boundaries</td>
</tr>
<tr>
<td>VM Mobility</td>
<td>Seamless VM Mobility</td>
</tr>
<tr>
<td>Scale above 4k Segments (VLAN limitation)</td>
<td>Scale up to 16M segments</td>
</tr>
<tr>
<td>Secure Multi-tenancy</td>
<td>Traffic & Address Isolation</td>
</tr>
</tbody>
</table>

![Diagram](Image)
Challenges with VXLAN Deployments

LIMITED SCALE
- Flood and learn (BUM)- Inefficient Bandwidth Utilization
- Resource Intensive – Large MAC Tables

CENTRALIZED
- Centralized Gateways, Controller – Traffic Hair-pining
- Sub-Optimal Traffic Flow

Barrier for Scaling out Large Data Centers and Cloud Deployments
What problems does BGP EVPN solve for VXLAN?

- Control plane for VXLAN overlays
- Optimize/eliminate flooding of
 - Unknown unicast traffic.
 - Protocol messages, e.g. ARP
- Virtual machine mobility with optimal forwarding
 - No hair pinning of traffic to previous location
- Active/active multi-homing with per flow load balancing
- Large scale multi-tenancy in control plane with characteristics of L3VPN
 - Route filtering and constrained route distribution
- Ingress replication of multi-destination traffic
 - Multicast free underlay
BGP-EVPN / VXLAN Terminology

1. Layer-2 VNI
 - VNI (VXLAN network identifier) carried in VXLAN packets bridged across VTEPs (VXLAN tunnel end point) . This VNI is configured per VLAN.

2. Layer-3 VNI
 - VNI carried in the VXLAN packets routed across VTEPs. This VNI is linked per Tenant VRF.

3. Anycast GW
 - All L3 VTEPs are configured with same mac and same subnet for host facing SVI.

4. VRF overlay VLAN
 - Every Tenant VRF will need a Vlan to be configured for VXLAN routing.
 - This VLAN is configured with L3-VNI.

5. VXLAN L2 Gateway
 - VTEP capable of switching VLAN->VXLAN, VXLAN->VLAN packets with in same VNI.

6. VXLAN L3 Gateway
 - VTEP capable of routing packets across different VNIs.
Use MP-BGP with EVPN Address Family on leaf nodes to distribute internal host MAC/IP addresses, subnet routes and external reachability information.

- MP-BGP also used to distribute IP multicast groups information.
- MP-BGP enhancements to carry up to 100s of thousands of routes with reduce convergence time.
BGP EVPN Route Types

<table>
<thead>
<tr>
<th>Route-Type</th>
<th>EVPN Routes</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ethernet Auto-discovery Route</td>
<td>Mass withdrawal and Aliasing</td>
</tr>
<tr>
<td>2</td>
<td>MAC/IP Route</td>
<td>Advertise host MAC and IP address</td>
</tr>
<tr>
<td>3</td>
<td>Inclusive Multicast Route</td>
<td>Tunnel end point discovery for setting up of replication list</td>
</tr>
<tr>
<td>4</td>
<td>Ethernet Segment Route</td>
<td>Discovery of nodes in redundancy group and DF-election</td>
</tr>
<tr>
<td>5</td>
<td>IP Prefix route</td>
<td>Advertise IP prefixes</td>
</tr>
</tbody>
</table>
BGP EVPN MAC Route (Type – 2 Route)

- RD: per VPN RD
- MAC Len: 48
- MAC Addr: Host-MAC
- IP Length: 32
- IP address: Host-IP
- Label1: VNI for BD
- Label2: VNI for VRF

Route Target
- RT for EVI
- RT for VRF

Tunnel Attribute
- Tunnel Type: VXLAN
- MAC: Router MAC

MAC Mobility Sequence Number
Advertisement of MAC:VNI bindings from a TOR via BGP EVPN enables a remote TOR to send bridged traffic to that MAC using the VNI for that MAC to the TOR that advertised the MAC over VXLAN.
Advertisement of IP:VNI bindings from a TOR via BGP EVPN enables a remote TOR to send routed traffic to that IP using the VNI for that IP to the TOR that advertised the IP over VXLAN.
BGP EVPN IP Prefix Route (Type – 5 Route)

- RD: VRF RD
- Ethernet Segment: 0
- Ethernet Tag: 0
- IP Address Len: 0-32
- IP Address: IP prefix
- GW IP Address: 0
- Label: L3 VNI

Route Target
- RT for VRF

Tunnel Attribute
- Tunnel Type: VXLAN
- MAC: Router MAC
IP Prefix Route:
Prefix : 10.1.1.0/24
VNI : L3 VNI
Next Hop : IP-L1
Router MAC : System MAC of Leaf1

Subnet
10.1.1.1/24
DCI Overview

- L3 DCI Service:
 - EVPN-VXLAN to IP VPN (unicast) Interworking on DCI
- L2 DCI Service:
 - EVPN-VXLAN to VPLS Interworking on DCI
 - EVPN-VXLAN to OTV Interworking on DCI
 - EVPN-VXLAN to EVPN-MPLS Interworking on DCI
L3 DCI Service

EVPN Route Type 5:

- **RD**
- **Prefix**
- **Label** = VRF-VNID
- **RT**
- **NH** = VTEP-IP
- **Tunnel ENCAP** = VXLAN
- **Ext Comm Attr**: RMAC

- **VNID**: per-VRF encap, downstream assigned by BL and DCI
- **MAC**: next-hop router MAC (BL, DCI)
- **NH**: VTEP IP (BL, DCI)
- **RT**: coordinated between each DCI-BL pair
- **ENCAP**: VXLAN
L3 DCI Service – Control Plane

- Fabric can advertise aggregated prefix and specific host route to WAN
- WAN router will typically advertise default route into fabric

Prefix 0.0.0.0/0
MAC: DCI-MAC
VRF-VNI: 102
NH: VTEP-DCI
RT: ASN:X
ENCAP: VXLAN

Prefix 1.1.1.0/24
MAC: bLeaf-MAC
VRF-VNI: 101
NH: VTEP-BL
RT: ASN:X
ENCAP: VXLAN

Prefix 1.1.1.0/24
MPLS label: 16001

Prefix 5.5.5.0/24
MPLS label: 26001

Prefix 5.5.5.0/24
MPLS label: 56001

• per-VRF VNI assignment
• VNI is local router significant and assigned by downstream router just like MPLS VPN label
• Ingress and egress VNIs can be different for same VRF
• RT is unique per-VRF between fabric and WAN as the “glue”
• MAC is next-hop router MAC which could advertised global per-VTEP or per-VNI / VRF
• NH is set to VTEP IP
• ENCAP is set to VXLAN

Host A: 1.1.1.1

Host E: 5.5.5.5

Client
L3 DCI Service – DCI Forwarding Plane

1. WAN -> Fabric

1. WAN -> Fabric

MPLS Packet

Label lookup

Label -> VRF

VRF FIB lookup

VXLAN ENCAP (VRF-VNI)

VXLAN Packet

per-prefix

2. Fabric -> WAN

VXLAN Packet

VNI lookup

VNI -> VRF

VRF FIB lookup

L3VPN MPLS ENCAP

MPLS Packet
References

- VXLAN: A framework for overlaying Virtualized Layer 2 Networks over Layer 3 Networks -- RFC 7348
- BGP MPLS based EVPN -- RFC 7432
- Requirements for Ethernet VPN (EVPN)
- A Network Virtualization Overlay Solution using EVPN
TOMORROW starts here.