Home Network or Access Link? Locating Last-mile Downstream Throughput Bottlenecks

Srikanth Sundaresan
International Computer Science Institute
Nick Feamster
Princeton
Renata Teixeira
INRIA

It is Difficult to Locate Problems in the Last Mile

Why Is My Internet Suddenly So Slow?

Many sources of problems

- •ISP congestion
- Wireless / End-Clients

Or beyond

- Peering
- Server-side

How can we determine whether the problem is the home wireless network or access link?

Exploiting the Gateway's Vantage Point to Locate Bottlenecks

- End hosts do not have sufficient visibility
 - No global view: can identify presence of bottlenecks, but not location
- The gateway has visibility into access link and wireless network

Locating Last-mile Bottlenecks from the Gateway

- Active measurements are not representative
 - Throughput/latency don't mean much per se
 - May not represent actual performance users see
 - Wireless conditions vary too much
- We need to measure passively
 - Represents actual user traffic (and end-to-end)

What metrics can we use from the gateway?

Locating Last-mile Bottlenecks Using Buffering Information

Packets get buffered at bottleneck link

- Smoothed departures on bottleneck leads to steady packet inter-arrival times at the destination
- Buffering delays at queue leads to increased RTT

Bottlenecked Packets Have Steady Inter-arrival Times

Packets *after* bottleneck have low coefficient of variation of inter-arrival time (cv₊)

Using LAN RTT to Detect Wireless Bottlenecks

LAN RTT (τ) between gateway and client increases significantly if the wireless is the bottleneck

Home or Access?: A Light-weight Bottleneck Locator for the Gateway

Experimental Evaluation

- Testbed with configurable "access link"
 - Varying wireless, access link, loss/latency
 - Emulate wireless, access link, and miscellaneous bottlenecks
 - Wide area pathologies loss, high latency
- High detection accuracy for simple thresholds
 - $[cv_t < 0.8, \tau > 15 \text{ ms}] \text{ leads to TPR} > 95\%, \text{FPR} < 5\%$

System Prototype Design

- Collect pcaps on device
 - No payload: only TCP/IP headers
 - Headers completely anonymized on device
 - 10 seconds or 10,000 pkts, whichever comes first
 - Number of devices using network (anonymized)
 - Wireless configuration
- Data collected 3 times an hour
- Offline analysis of anonymized data

Deployments

- Pilot: on Project BISmark deployment
 - Netgear WNDR 3700v2, 3800 (802.11 agn)
 - 650MHz processor, 128 (64 for 3700v2) MB RAM
 - 64 homes worldwide, 1 month
- FCC/SamKnows deployment
 - Netgear WNR 3500L (802.11 bgn)
 - 480 MHz processor, 32 MB RAM
 - 2652 homes in US, 2 days

How Frequent are Throughput Bottlenecks?

40-55% of tests with significant traffic see throughput bottlenecks

Access-link vs Wireless bottlenecks

Access link bottlenecks are only significant < 20 Mbps. Wireless bottlenecks dominate beyond 20 Mbps.

Potential Wireless Problem: 2.4GHz

The 5 GHz channel has higher bitrates, lower retransmission rates

What Throughputs do Users Get When They are Access Bottlenecked?

Throughput matches user's access link throughput (measured independently)

Project Status

- Proof-of-concept system works on OpenWRT
 - FCC deployment had some resource constraints issues
 - Actively developed for improved robustness
 - Online version demo'd at ACM SIGCOMM 2014
- Caveats: Does not work for upstream traffic or with wireless upstream (WiMax/4G)
- Looking for deployments in home routers!

Conclusion

- HoA: A light-weight and accurate system to locate last-mile downstream throughput bottlenecks
 - Deployed by the FCC MBA program in resourceconstrained gateways
 - Looking for further deployments!
- Access link bottlenecks are common < 20~Mbps
 - Wireless bottlenecks dominate > 20~Mbps