Next- Generation Telemetry Architecture

fine-grain, high-fidelity Telemetry for network elements

Rafal Jan Szarecki, Solution Architect, Routing, Juniper

1

Network node model

itrol plane

Traditional telemetry in packet network

- Data is pulled periodically by centralized system
- Provides "averaged" view of system's over longer period of time
 - 5-30 minutes or longer intervals (5 minutes is "common standard")
 - Obscure dynamic changes of states.
- Reasonable for long-term planning and optimization [months/years cycles]
- Known count of well known counters collected. Semantics' of counters is well known.

Traditional telemetry architecture and implementation

- SNMP is THE protocol
 - MIB data structures:
 - · Not everything is a tree
 - Expensive translation
 - · Complex modeling in SMI/ASN.1
 - inefficient and complex encoding
- Most data resides in data plane.
 - · Nested pulling, or
 - Periodical update of Central control plane
 - Scalability (all possible data)
 - Internal interval put limit on polling interval.

SNMP inefficiency - example

- Port level stats
 - ifIndex is dynamic
 - IF table lookup for namelifIndex
 - IF table for errors and traffic
 - IF CoS table
- Overhead in response
 - 4-8 times more data descriptions then actual data.
 - Often same description repeated

multiple times.

- Request == response's overhead
- SNMP manager to correlate data from multiple tables.

5

Optimization – driver for Telemetry

- IP Networking industry entering adulthood
 - · Not as sexy as it was
 - Not as fast developing as it was
 - Its going to be more solid, reliable and efficient.
- We heading optimization phase of industry
 - Every optimization starts with data collection
 - More data more optimization opportunities and higher optimization degree.

The big shift in data

Next time you fly, think about this: A Boeing 737 engine generates 10 terabytes of data every 30 minutes in flight. A 6 hours flight from New

Boeing 787s to create half a terabyte of data per flight, says Virgin Atlantic

Self-driving cars could create 1GB of data a second
And auto sensors may soon schedule repair appointments automatically Driverless cars yield to real

Next Generation Telemetry

- Better suited for high fidelity event reporting.
 - Traffic Micro-bursts
 - Short-living states e.g. Signaling/routing messages peaks
 - In run-time
- Feeds Machine Learning [ML] network analytics
 - We do not know about network what we do not know.
 - Enables AI/ML/BigData analytics to locate patterns and relationships the operators haven't yet discovered. This requires a lot of data at high fidelity.
- Enables optimization:
 - usage-based provisioning and configuration.
 - Trend-based behavior prediction and proactive actions.

High-Fidelity, Run-Time statistics and events collection

7

NG telemetry components

- Available sensor publication
 - Data models
 - NETCONF
- Subscription to data from sensor
 - Data models
 - NETCONF/CLI
- Sensor data stream

- Data models
- Export protocols

Sensors Data export

8

The sensor

- The "thing" in the node that is
 - Aware of all objects of particular type
 - And able to trace counters and states associated with that object
- If enabled, exports all data together
- · Sensor instantiation point
 - Depends on type of object it monitors.
 - To cover whole node, multiple sensors of same type may be needed

Example:

- · Physical interface sensor
 - Knows all physical interfaces of PFE it is instantiated
 - Trace and report following counters of all this interfaces
 - In/Out bytes
 - In/out packets
 - In/Out pps
 - In/Out bps
 - Max/Avr. Utilization
 - Ingres/Egress Queue stats:
 - Queued packets & bytes
 - Tail dropped packets
 - RED dropped packets & bytes
 - Average, current and peak occupancy
 - Allocated size

ING LEIGHTELL y - Publication and Subscription

- NetConf / YANG is good for this
 - No much changes static data
 - Rarely used well... once.
 - Machine-Machine
 - Vendor-agonistic
- Human-Machine CLI for old school like me is an option

```
module: jvision
+--rw sensor [sensor-name]
| +--rw sensor-name string
| +--rw server-name? string
| +--rw export-name? string
| +--rw resource? string
| +--rw resource-filter? string
| +--rw resource-filter? string
| +--rw streaming-server [server-name]
| +--rw server-name string
| +--rw remote-address? ipv4addr
| +--rw remote-port? uint16
+--rw export-profile [profile-name]
+--rw profile-name string
+--rw local-address? ipv4addr
+--rw local-port? uint16
+--rw reporting-rate? uint32
+--rw format? enumeration
+--rw timestamp? enumeration
```

NG telemetry - data streaming

- Pushed reports
 - Periodical (sub-second)
 - At time of state change (events).
- Distributed sensors. Reports directly from the location of the data
 - · No nested pull
 - Sensor and export profile provisioned once.
- Open export protocol
 - Efficient
 - On wire
 - On resources ASIC
 - Compatible with IT systems in use
 - Easily extensible

Binary streaming is efficient

Sensor's object models and data

JU 4064163

Formal, abstraction model

- Unambiguous
- **Implementation** (vendor) agnostic

Data structure

- Follows model
- Efficient (optional fields)
- Extendable

NG telemetry use case—example 1

Network device with 4 active interfaces. What would be impact if I connect another 2 ports of given ASIC to increase BW?

- Every 2sec NG Telemetry reports "peak buffer occupancy '
 - 1 week 220,000 samples
 - Predicted buffer utilization increase 1.5 times
 - 0.06% of samples reach 100%
- Predicted impact loss rate increase by 0.06% or less
- 5min interval (SNMP typical) Predicted impact loss rate increase by 40% or less.

NG telemetry use case—example 2

- TED carries only RSVP view of interface BW
 - Total BW (== IF BW in most cases)
 - Current available BW
 - Traffic of native IP and LDP invisible.
- Telemetry data allows to adjust TED used by PCE.
 - Fix accuracy of existing metrics (IF BW)
 - New innovative metrics (e.g. # transit LSP, Switch Fabric load)
- PCE decision more accurate.

15

NG telemetry use case—example 2

Interface do not show packet loss, but Application experience performance loss

- Analytics locates a pattern App complains reports align with NPU1 packet drops report
- · NetOp investigate how they are connected
 - · NPU2 From-Fabric overloaded
 - · Traffic spike on another NPU toward NPU2 (green)
- Resolution Re-locating some systems connected to NPU2 to other NPU

NG telemetry App – Big Data

- We do not know what we do not know
 - That's Columbus adventure journey to the unknown
- You may discover **Eldorado**
 - But most probably just America.
- Analytics engines is a todays
 "Caravels" a vehicle to bring us to
 the new territory.
- Human brain power, would still be required to provide:
 - Practical needs
 - Interpretations

Early Field Experiments

- Web2.0 company and Juniper
- Export format GPB
 - Easy to program, compiles w/ multiple languages, open source library
 - · Binary data format
 - Fit's well into Company's Analytics infrastructure.

18

Experiments – LSP monitoring

- Using RSVP-TE with auto-bandwidth for network self-optimization.
- Report
 - state change of each end every LSP (rsvp) followed by

```
// Schema for communicating properties of
LSPs
message lsp_monitor_data_property {
    optional int64 bandwidth = 1;
    optional string path name = 2;
```

. - - 1- , . - . . - ,

- New BW reservation
- New ERO and RRO
- Reporting is pushed by router immediately
- Purpose:
 - Network state rewind troubleshooting
 - Bandwidth demands trend analysis

19

Experiments – interface stats monitoring

- 1000 of interfaces per router to be monitored
 - 19 counters each
 - 64bit counters
- Independent sensor per line card
 - Load distribution
 - Not all data to be exported as same time
 - · Better scalability
- Purpose: Performance management Higher fidelity shorter intervals.

Experiments – findings

- Interface statistic interval was decreased by order of magnitude times without any impact on Router
- Time needed to collect all LSP states and attributes reduced by order of magnitude.
 - No need to pull nodes for attributes after trap
 - No need to parse attributes

21

Summary

- Telemetry is critical for Networking industry in optimization phase
- Higher scale network and nodes requires NG Telemetry architecture
 - · High Amount of monitored objects on each node
 - · High Amount of monitored nodes
 - · Resource optimization w/o compromising quality

- NG Telemetry initially augment SNMP where high scale and high fidelity is required.
- True power of NG telemetry is yet to be discovered w/ analytics
 - The modern approach already in place by most IT organizations.
 - This may be the beginning of journey.

Thank You

NG telemetry use case—example 2

Interface do not show packet loss, but Application experience performance loss

- Analytics locates a pattern App complains reports align with NPU1 packet drops report
- · NetOp investigate how they are connected
 - · NPU2 From-Fabric overloaded
 - · Traffic spike on another NPU toward NPU2 (green)
- Resolution Re-locating some systems connected to NPU2 to other NPU

2/

NG telemetry App - Big Data

- We do not know what we do not know
 - That's Columbus adventure journey to the unknown
- You may discover Eldorado
 - But most probably just America.
- Analytics engines is a todays
 "Caravels" a vehicle to bring us to
 the new territory

- Human brain power, would still be required to provide:
 - Practical needs
 - Interpretations

