
‹#›
v3

Source Routing 2.0
Why Now? Why Again?

Nick Slabakov
slabakov@juniper.net

‹#›

Outline
Source Routing

• Historical Notes

SPRING
• Principles of operation
• Why it has motivated new discussions on source routing

SPRING Inspirations
• SPRING-inspired second look at existing problems

Conclusions

‹#›

Terminology Level-Set

• Source Routing
• Explicit definition of a packet path within the packet header by the source.
• Source Routing is a generic term, there are many methods of doing it.

• Segment Routing
• Emergent network architecture based on the distribution of label (and IPv6

segment) info in the IGP.
• Segment Routing is one specific way of doing Source Routing.

• SPRING (Source Packet Routing In NetworkinG)
• IETF working group tasked with standardizing the architecture and protocols

associated with Segment Routing.

‹#›

Source Routing – Short History
Key idea

• Prescribe the path of the packet in its header at the source; the source has unique
knowledge about the desired path.

• A nice side-effect is that loops can be avoided.
• Reduce/remove forwarding state in the network, put it in the packet instead.

Examples
• Niche high-performance interconnects

• Myrinet, SpaceWire, etc.
• Token Ring, APPN, ANR (IBM), …
• IP

• IPv4 – LSRR and SRRR options.
• IPv6 – Extension header of routing type.

‹#›

IP Header-Based Source Routing

IPv4 options and IPv6 header extensions
• Treated as easily spoof-able and prone to amplification attacks.
• Generally disabled on all Internet-connected routers.
• RFC5095 actually deprecates Type 0 routing extension header:

• “An IPv6 node that receives a packet with a destination address assigned to it and that contains an RH0 extension header MUST
NOT execute the algorithm specified in the latter part of Section 4.4 of [RFC2460] for RH0 …”.

Tunneling
• Tunneling at the SP edge delineates the trust boundary.
• Tunneling is a common method of doing source routing from the SP edge

• E.g. MPLS/RSVP uses EROs extensively, but operates under the operator’s sphere of control.

Security Concerns and Solutions

‹#›

Why Now? Why Again?
SPRING (a.k.a. Segment Routing)

• Tunnel packet from source to destination by encoding the path in the tunnel
header of the packet

• Combine the benefits of source routing and tunneling.
• The more you care about describing the specific path, the more state you need

to insert in the header
• Conversely, if you don’t care about the specific path, less state is needed.

Centralized Controllers
• Itself not a new idea, but one with new blood in it.

• Every SDN has one ☺
• Path calculation and path programming – on routers and on hosts.

‹#›

Outline
Source Routing

• Historical Notes

SPRING
• Principles of operation
• Why it has motivated new discussions on source routing

SPRING Inspirations
• SPRING-inspired second look at existing problems

Conclusions

‹#›

Key Concepts:
The Two Building Blocks of SPRING

R5

R1 R2 R3

203

 201

20
5

R2 Area 0 advertisement:
Local Label 201, To 192.168.1.1
Local Label 203, To 192.168.1.3
Local Label 205, To 192.168.1.5

Every router in an IGP domain
creates 1-hop LSP to its IGP
neighbors & advertises the label in
the IGP.
The IGP floods the labels.

1. Advertising Labels in the IGP*

* For some data-center use-cases, there are proposals to utilize BGP for the same purpose.

R1 R2 R3

R4 R5 R6

R7

Ingress Router uses a stack of labels to describe a path. The label
stack is the ERO.

Each router POPs the top label and forwards the rest.

Accomplishes explicit routing without signaling forwarding state.

2. Forwarding based on a stack of MPLS labels**

205
506
603
307

205

506

603

307

** There is an IPv6 data-plane proposal for SPRING, but the concepts are similar.

‹#›

SPRING: Adjacency Label

• To send a packet to R5 along the path (R2,R3,R7,R6), R1 sends to packet to R2 with label stack = <203,307,706,605>.
• Each router determines next-hop from top label, then POPs the label.

R1 R2 R3

R7

R4 R5 R6

R1 IGP advertisement
Local label:102, link to
R2
Local label:104, link to
R4

R2 IGP advertisement
Local label:201, link to
R1
Local label:203, link to
R3
Local label:205, link to
R5

R3 IGP advertisement
Local label:302, link to
R2
Local label:306, link to
R6
Local label:307, link to
R7

R7 IGP advertisement
Local label:703, link to R3
Local label:706, link to R6

R4 IGP advertisement
Local label:401, link to R1
Local label:405, link to R5

R5 IGP advertisement
Local label:502, link to
R2
Local label:504, link to
R4
Local label:506, link to
R6

R6 IGP advertisement
Local label:603, link to R3
Local label:605, link to R5
Local label:607, link to R7

203
307
706
605
pay
loa
d

pay
load

307
706
605
pay
load

706
605
pay
load

605
pay
load

Observations:
• Amount of State:

• No LSPs or per-LSP state on transit
routers. That is nice.

• Then again, if you want per-LSP stats,
or TE, or bandwidth reservation, it is not
so nice.

• Trivial method of forwarding
• It requires deep label stack support

(mitigated by node-segments).
• There are practical challenges in

imposing such deep stacks in both
custom and merchant silicon.

• We almost never care to describe
the path with such specificity

• E.g. “loose-hop” is often sufficient.

‹#›

SPRING: Node Label (SID)

• In simplest version, each router advertises a global node label in the IGP.
• Whenever a router receives a packet with label=107, it forwards the packet (without modifying

the label) along the shortest path to R7.
• Problem: Global node label is not compatible with the local label assignment used by MPLS

protocol suite (RSVP, LDP, BGP-LU, etc.)
• In MPLS, a router decides the values of the labels that other routers use to send it traffic.
• What if R6 has already used label=107 to advertise a FEC-label binding in LDP?

Global Node Label Version

R1 R2 R3

R7

R4

Assume same
IGP metric on
each link

R5 R6

shortest
path to R7

Node label=107107
pay
loa
d

107
pay
loa
d

pay
loa
d

107
pay
loa
d

107
pay
loa
d

pay
loa
d

See backup slide for discussion
on the solution to the global label

problem.

‹#›

Label Stack “Compression”
Using Both Adjacency and Node Labels

R1 R2 R3

R7

R4 R5 R6

82
82
pay
load

pay
loa
d

82
83
82
82
pay
load

83
82
82
pay
load

82
pay
load

Using only adjacency labels requires 4 label
stack for explicit path.

R1 R2 R3

R7

R4 R5 R6

shortest
path to R7

Node label=107

107
82
82
pay
load

82
82
pay
load

107
82
82
pay
loa
d

82
pay
load

pay
loa
d

Can shorten label stack by 1 using a node label to
get to R7 (and 2 more labels to get to R5).

‹#›

Other Segments You Might Encounter
Prefix and Anycast SIDs

• Superset of Node segment, have global significance.
PeerNode, PeerAdj, PeerSet

• For egress peer engineering use-cases.
Mapping Servers

• To facilitate interoperability with LDP.
SID/Label Binding TLV

• Used to associate a label with a FEC and ERO.
• FEC can represent an LSP signaled by another protocol.
• FEC can represent a context-id for egress node protection.

BGP and BGP-LU enhancement work
• De-facto protocol of choice for MSDCs.
• draft-keyupate-idr-bgp-prefix-sid, draft-gredler-idr-bgplu-epe.

‹#›

Outline
Source Routing

• Historical Notes

SPRING
• Principles of operation
• Why it has motivated new discussions on source routing

SPRING Inspirations
• SPRING-inspired second look at existing problems

Conclusions

‹#›

Useful Concepts from SPRING
Predictable label values

• Good for troubleshooting
• If I know the label values along the way, I don’t have to look them up.

• Good for incorporating a controller
• Controller does not need to read label values, it can simply “know” them, so a few steps can be saved in creating

the label stacks that describe paths.

The notion of a Node SID
• One instruction (label) that takes you from the source to the destination via whatever ECMP path is

available between them
• Elegant, powerful, cheap.

So people thought …
Can’t we benefit from these in our existing networks?

‹#›

SPRING Use-Case #1

• Run “normal” MPLS control and data-plane
• In addition, assign and advertise the following adjacencies:

• Adj-SID for each single-link interface and for each AE interface
• Unique Adj-SID per physical links of a AE bundles
• Node-SIDs

• The Path Monitoring Server (PMS) can now construct arbitrary paths without creating state in the network

Exhaustive Data-Plane Monitoring using SPRING

R1

R2

R5

R3 R4

102
201 205

502

504

405

103

301

304 403

3041

3042

4031

4032

111

222

555

444333

1022055044031301

“Traverse the ring clock-wise using the upper LAG link deterministically”
Payload

102205504403301

“Traverse the ring clock-wise using hashing on
LAGs”

Payload

Probe examples from PMS to R1
(Assuming the Payload’s destination IP address is the PMS, so the packet can return
to it)

4444031Payload

“Route the probe to R4 via the shortest path (don’t care about the
direction), then exercise the upper LAG link”

301

PMS

REFERENCE: draft-geib-spring-oam-usecase

‹#›

SPRINGspiration #1: The Same Use-Case

Exhaustive path monitoring with RSVP
• https://www.nanog.org/meetings/nanog57/presentations/Tuesday/tues.general.GuilbaudCartlidge.Topology.7.pdf

• Create an exhaustive mesh of explicitly routed RSVP LSPs that cover not only the best path, but all paths
• Send OAM probes on all paths, monitor the results, correlate them, and deduce failing links
• That is pretty cool, but creates significant additional per-LSP state in the network, just for OAM traffic

Exhaustive path monitoring with static LSPs
• Other operators have chosen to use static LSPs between neighboring routers, just to get around that

additional RSVP state
• SPRING Concepts: Predictable Labels, POP-and-forward

Solved With RSVP (1) and Static LSPs (2)

mpls {
 static-label-switched-path R1-
R2{
 transit 1000002 {
 next-hop 1.1.2.2;
 pop;
 }
 }
 static-label-switched-path R1-
R3 {
 transit 1000003 {
 next-hop 1.1.3.2;
 pop;
 }
 }
}

mpls {
 static-label-switched-path R2-
R1{
 transit 1000001 {
 next-hop 1.1.2.1;
 pop;
 }
 }
 static-label-switched-path R2-
R3 {
 transit 1000003 {
 next-hop 1.2.3.2;
 pop;
 }
 }
 }
mpls {
 static-label-switched-path R3-
R1{
 transit 1000001 {
 next-hop 1.1.3.1;
 pop;
 }
 }
 static-label-switched-path R3-
R2 {
 transit 1000002 {
 next-hop 1.2.3.1;
 pop;
 }
 }
 }

100000210000031000001

“Traverse the ring clock-wise”

Payload

Probe examples from PMS to R1
(Assuming the Payload’s destination IP address is the PMS, so the packet can return
to it)

R1

R2

R3

1.1.2.2

1.1.2.1
1.2.3.1

1.2.3.2

1.1.3.1

1.1.3.2

PMS

‹#›

Creating MPLS Overlays in the Data-Center
SPRINGspiration #2

The VM and Server labels are not interesting
• Typically controller-assigned and manages as part of the

orchestration
• Only meaningful to hosts, so the network doesn’t care

Egress TOR labels is what we forward on
• How does the Ingress ToR resolve that Egress

ToR label? Ingress ToR is usually not directly
connected to the Egress ToR

• Using SPRING Node-SID
» Upgrade to SR needed (or BGP-LU extensions)

• Using ToR-to-ToR RSVP/LDP mesh
» Per-LSP state is in the order of N2

• Static LSPs
» With remote next-hops
» And resolution via hop-by-hop RSVP or BGP-LU

LSPs
» Per-LSP state is in the order of N

Ingress
ToR

Egress
ToR

CAUTION: Controversy

http://www.slideshare.net/DmitryAfanasiev1/yandex-nag201320131031
For a good reasoning on why MPLS in the DC, see:

‹#›

SPRINGspiration #2
Static LSPs With Stitching

VM

EthernetCustomer packet 1000003MPLS label
Egress server

MPLS label 
VM

BGP-LU:
For FEC ToR3, use label
3 (implicit null)

ToR3
Lo0: 3.3.3.3

BGP-LU:
For FEC ToR3,
use label 299840
(BGP-assigned)

ToR1

Benefits
• Retain predictable label assignments for ToRs (ToR3 is always addressed with label 1003 by everyone – good for troubleshooting

• Just like Node-SID from the server perspective ☺
• Use existing methods of label swapping in the transit nodes (BGP-LU, RSVP, LDP)
• Yet do NOT create a full mesh of signaled LSPs between all ToRs (N2)

ToR1 Forwarding:
show route table mpls.0

1000003 *[MPLS/6] 15:38:40, metric 1,
metric2 0
 > to 1.2.3.2 via ge-0/0/1.0, Swap 299840

ToR1 Config (Ingress):

mpls {
 static-label-switched-path TOR1-
TOR3 {
 transit 1000003 {
 next-hop 3.3.3.3;
 stitch;
 }
 }
}

‹#›

• The concepts
• Create an overlay that terminates at the peering router

• It may start at the source host, or at the ingress router
• Use this overlay to

• Bypass the route lookup process at the peering router
• Override the BGP best-path selection (possibly using application performance feedback)

NOT a New Idea in This Community

NANOG48
February 2010

“BGP-TE: Combining BGP and MPLS-TE
to Avoid Congestion to Peers”

SPRING Use-Case #3: Egress Peer Engineering

‹#›

SPRING

P1

P2

P3

P4

PR1
111

PR2
222

DR

EPE
Controller

A/8
B/24
C/20

DestinationsPeersPeering
Routers

Ingress
Router

Traffic
Originator

EPE Policy
Programming:
BGP-LU,
Flowspec,
Static route,
OpenFlow
Etc …

POLICY STACK

For A.0/16 (first half of
A/8) send to P1

111
101

For A.128/16 (second
half of A/8), send to PR2,
then P4

222
204

For B/24, send via
PR2, then P3

222
203

For C/20, send to
PR1, then P2

222
202

Example EPE Overlay
Policy• Role of PR:

– Assign per-peer labels
– Announce own loopback with label
– Announce routes to controller
– De-capsulate outbound traffic

(Data-plane)
• Role of Controller

– Make best route selection
– Generate encapsulation for overlay
– Program ingress with proper

encapsulation
• Role of Ingress

– Impose encapsulation on packets

Traffic Origination Likely Overlay Encapsulation

Data Center MPLS over GRE (or GRE-only)

CDN Cache MPLS over MPLS

SPRING Use-Case #3: Egress Peer Engineering
Reference: draft-filsfils-spring-segment-routing-central-epe

SID: 101

SID: 102

SID: 202

SID: 203
SID: 204

BGP-LS:
Node-SIDs 111 and 222
PeerAdj SIDs 101, 102, 202, 203,
204

‹#›

SPRINGspiration #3: Egress Peer Engineering
Same Use-Case, This Time Without SR, Just BGP-LU

RSVP

P1

P2

P3

P4

PR1

PR2

DR

EPE
Controller

A/8
B/24
C/20

DestinationsPeersPeering
Routers

Ingress
Router

Traffic
Originator

POLICY STACK

For A.0/16 (first half of A/
8) send to P1

LSP 1
101

For A.128/16 (second half
of A/8), send to PR2, then
P4

LSP 2
204

For B/24, send via
PR2, then P3

LSP 2
203

For C/20, send to PR1,
then P2

LSP 2
202

Example EPE Overlay
Policy

Same EPE policy can be constructed

Reference: draft-gredler-idr-bgplu-epe

• Standard BGP-LU
– Used to allocate per-peer

label to the /32 identifying the
peer

– The peer is unaware
• This works well with

current protocols
– Deployed extensively

IGP: Loopback addresses for PR1/
PR2
BGP-LU: Peer-routes with labels
101, 102, 202, 203, 203
(note: The peer does NOT have to participate
in BGP-LU, or be aware of it)

101

102

202

203

204

IGP:
PR1 via LSP1
PR2 via LSP2

‹#›

show protocols bgp
egress-te-backup-paths {
 template abc {
 peer 19.2.0.2;
 ip-forward;
 }
 template abcv6 {
 peer 19:2::2;
 peer 19:1::1;
 remote-nexthop {
 ::ffff:9.9.9.9;
 }
 }
 template def {
 peer 19.1.0.1;
 remote-nexthop {
 7.7.7.7;
 }
 }
}
group toPeer1Link1 {
 egress-te; …
}
group toPeer3V6 {
 egress-te {
 backup-path abcv6;
 } …
}
group toPeer2 {
 egress-te {
 backup-path def;
 } …
}

SPRINGspiration #3: EPE
BGP-LU Enhancements for EPE

Auto-generation of BGP-LU routes for peers
– Based on existing EBGP session to peer.
– Instead of defining a static route and then exporting it to IBGP-LU (previous technique).
– Semantics: POP, forward to peer interface.
– Export to IBGP-LU with next-hop self
– Attach BGP communities to inform ingress / controller about the nature of the label

• Single-hop EBGP session
• Multi-hop EBGP session
• Parallel multi-hop EBGP sessions to be load-balanced

Local protection for labeled traffic
– Because we don’t want to wait for the controller to re-progam all hosts/ingress routers
– 3 protection options

• Ordered list of backup peers
• Remote next-host (resolved via inet[6].3)
• IP lookup

‹#›

Conclusions
SPRING has sparked the imagination

• Around useful source/static routing.
• SPRING brings net-new use-cases and benefits but requires an infrastructure upgrade.

• New forwarding mechanism - training, operationalizing, de-bugging, and not the least, accepting the loss of some useful features.
• By applying some of the SPRING concepts in existing networks, creative operators have achieved some of the

cool-ness of SPRING and source-routing on their existing MPLS networks

3 Examples in this talk
• Exhaustive network monitoring

• Use static LSP constructs the same way adjacency labels are used to source-route OAM probes through every path in your network.
• Static LSPs with remote next-hop resolution and stitching

• Achieve predictable “global” label assignments in the data-center using traditional MPLS transport without creating full LSP mesh
between all ToRs.

• Egress Peer Engineering (EPE)
• SPRING has sparked renewed interest in this existing solution, and has given us a reason re-think it and enhance it.

Thank You

‹#›

Backup Slide

‹#›

SPRING: Node Label (SID)
Local Label Ranges (SRGBs) with Global Indexes

R1 R2 R3

R7
R4

R5 R6

Index = 7
Label block = 100-199

Index = 3
Label block = 100-199

Index = 2
Label block = 100-199Index = 1

Label block = 100-199

Index = 6
Label block = 200-299Index = 5

Label block = 100-199
Index = 4

Label block = 100-199

107
pay
loa
d

107
pay
loa
d

pay
loa
d

107
pay
loa
d

207
pay
loa
d

pay
loa
d

R4:
packet destination = R7
index = 7, next-hop = R5
transmit_label = (R5_label_offset + index)
 = 100 + 7 = 107

R5:
index = receive_label – R5_label_offset = 107 - 100 = 7 (R7)
next-hop = R6
transmit_label = (R6_label_offset + index) = 200 + 7 = 207

• Have your cake & eat it too
• Ensuring interoperability

• Across vendors and
implementations

• With environments running
RSVP/LDP/BGP-LU

• Still one can configure the
same SRGB blocks on all
devices
• If they allow it
• For a moral equivalent of

global labels

