

DDoS Mitigation

Krassimir Tzvetanov

NANOG 64

Introduction and overview

Introduction

• Who am I?

• What is the target audience of this tutorial?

Overview

- Discuss what DDoS is, general concepts, adversaries, etc.
- Go through a networking technology overview, in particular the OSI layers, sockets and their states, tools to inquire system state or capture and review network traffic
- Dive into specifics what attack surface the different layers offer
- Discuss reflection, amplification and back scatter
- Terminology
- Tools

What is DoS?

What is Denial of Service?

- Resource exhaustion
- ...which leads to lack of availability
- Consider:
 - How is it different from CNN pointing to somebody's web site?
 - How is that different from company's primary Internet connection going down?
- Conclusion: It is a condition which leads to lack of availability of a resource

What is Denial of Service?

• The main point:

DoS is an Outage!

DoS vs. DDoS?

• One system is sending the traffic vs many systems are sending the traffic

TODO: Elaborate on the differences

Common misconceptions

You do not need a botnet?

It's not a matter of application or devices weaknesses but rather capacity

The problem?

Let's look at attack bandwidth

- Bandwidth in 2010 little over 100 Gbps?
- Last year over 300Gbps
- This year?
- Over 400 Gbps

~ 10 110 111 OIKS, IIIC

Contributing factors

- Not patched Content Management Systems (CMSes)
- Available reflectors (DNS, NTP, SSDP)
- ...with ability to amplify
- More bandwidth available
- Unpatched embedded devices (mostly home routers)

Who is the adversary?

Adversary

- Wide range of attackers
 - High-school pranks
 - Frustrated "hackers"
 - Professional DDoS operators
 - State sponsored actors
 - Hacktivists
 - Did I miss anybody?

Skill level

- Wide range of skills
 - Depending on the role in the underground community
- Mostly segmented between operators and tool-smiths
- Tool-smiths are not that sophisticated and there is a large reuse of code and services
 - This leads to clear signatures for some of the tools

©A10 Networks, Inc.

Motivation

- Financial gain
 - extortion
 - taking the competition offline during high-gain events
- Political statement
- Divert attention (seen in cases with data exfiltration)
- Immature behavior
- etc.

Technology and Terminology Overview

Technology Overview

- The purpose of this section is to level set
- Topics we'll cover
 - OSI and Internet models
 - TCP and sockets
 - Look at the operation of tools like netstat, netcat, tcpdump and wireshark
 - DNS operation and terminology
 - NTP, SNMP, SSDP operation
 - Some terminology and metrics
- Let me know if the pace is too slow or too fast

Attack types and terminology

Attack classification classifications (pun intended);)

- By volume
 - Volumetric
 - Logic/Application
- Symmetry
 - Asymmetric
 - Symmetric
- Direction
 - Direct
 - Reflected

- Source
 - Single source
 - Distributed
- State change
 - Permanent
 - Recoverable
- Automation
 - Manual (LOIC)
 - Automated
- Backscatter*
- Based on network layer

Metrics

- Bandwidth (Kbps, Gbps)
- PPS
- QPS
- Storage
- CPU
- Application specific usually latency

Backscatter

- What is backscatter and why do I care?
- Traffic that is a byproduct of the attack
- Why is that interesting?
 - It is important to distinguish between the actual attack traffic and unintended traffic sent by the victim

Attack surface

Network Layers – OSI vs Internet Model

OSI – Open
 Systems Interconnect

Physical and Data-link Layers

- Cut cables
- Jamming
- Power surge
- EMP
- MAC Spoofing
- MAC flood

Network Layer

Floods (ICMP)

 Teardrop (overlapping IP segments)

Transport Layer

- SYN Flood
- RST Flood
- FIN Flood
- You name it...
- Window size 0 (looks like Sloworis)
- Connect attack
- LAND (same IP as src/dst)

Session Layer

- Slowloris
- Sending data to a port with no NL in it (long headers, long request lines)
- Send data to the server with no CR

Presentation Layer

- Expensive queries (repeated many times)
- XML Attacks
 <!DOCTYPE lolz
 [
 <!ENTITY lol1 "&lol2;">
 <!ENTITY lol2 "&lol1;">
]>
 <lolz>&lol1;</lolz>

Application Layer

- SPAM?
- DNS queries
- Black fax

Attack summary by layer

Transmission Control Protocol (TCP)

Sockets

- Socket is an abstraction allowing an application to bind to a transport layer address (aka network port)
- It is described by a state machine
- Throughout its life time it goes through a number of states

Socket States

- Here are some of the socket states of importance:
 - LISTEN waiting for a connection request
 - SYN_RECV received request still negotiating
 - ESTABLISHED connection working OK
 - FIN-WAIT1/2 one side closed the connection
 - TIME-WAIT waiting for a while...
 - What is MSL?
- In most of the states a socket is characterized by:
 - IP address
 - TCP/UDP address

Use of netstat for troubleshooting

```
[root@knight ghost]# netstat -nap | grep 12345
            0 0.0.0.0:12345
                                   0.0.0.0:*
tcp
                                                     LISTEN
                                                              2903/nc
[root@knight ghost]# netstat -nap | grep 12345
tcp
            0 127.0.0.1:12345
                                                          ESTABLISHED 2903/nc
                                    127.0.0.1:49188
[root@knight ghost]# netstat -nap | grep 12345
            0 127.0.0.1:49188
tcp
                                    127.0.0.1:12345
                                                          TIME WAIT -
[root@knight ghost]# netstat -nap | grep 12345
[root@knight ghost]#
```

©A10 Networks, Inc.

SYN Flood

What is a SYN flood?

What is a 3-way handshake?

SYN flood

- Exploits the limited slots for pending connections
- Overloads them

SYN flood through the eyes of netstat

netstat –anp

```
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address
                                           Foreign Address
                                                                  State
                                                                           PID/Program name
                                                   LISTEN
                                                             1339/rpcbind
tcp
            0 0.0.0.0:111
                                 0.0.0.0:*
                                                              1395/rpc.statd
            0 0.0.0.0:33586
                                  0.0.0.0:*
tcp
                                                    LISTEN
                                                      LISTEN 1962/dnsmasq
tcp
            0 192.168.122.1:53
                                    0.0.0.0:*
            0 127.0.0.1:631
tcp
                                  0.0.0.0:*
                                                    LISTEN
                                                              1586/cupsd
tcp
                                                             2703/sendmail: acce
            0 127.0.0.1:25
                                  0.0.0.0*
                                                    LISTEN
                                                        SYN_RECV -
            0 127.0.0.1:25
                                  127.0.0.1:49718
tcp
                                  127.0.0.1:49717
                                                        SYN_RECV
tcp
            0 127.0.0.1:25
                                                        SYN_RECV
tcp
            0 127.0.0.1:25
                                  127.0.0.1:49722
                                                        SYN_RECV
tcp
            0 127.0.0.1:25
                                  127.0.0.1:49720
                                                        SYN_RECV
            0 127.0.0.1:25
                                  127.0.0.1:49719
tcp
                                                        SYN_RECV
tcp
            0 127.0.0.1:25
                                  127.0.0.1:49721
            0 127.0.0.1:25
                                  127.0.0.1:49716
                                                        SYN_RECV
tcp
```

SYN flood mitigation

- Technology
 - SYN Cookies
 - Whitelists
 - TCP Proxy (TCP Intercept active mode)
 - TCP Resets (TCP Intercept passive)
 - Nowadays volumetric
- Device stack optimization
- Dedicated devices

What is a SYN cookie?

Hiding information in ISN (initial seq no)

SYN Cookie:

Timestamp % 32 + MSS + 24-bit hash

- Components of 24-bit hash:
 - server IP address
 - server port number
 - client IP address
 - client port
 - timestamp >> 6 (64 sec resolution)

Enabling SYN-coockie

- To enable SYN cookies:
 echo 1 > /proc/sys/net/ipv4/tcp_syncookies
- All TCP related settings are located in /proc/sys/net/ipv4/
 - tcp_max_syn_backlog
 - tcp_synack_retries
 - tcp_syn_retries

Socket Exhaustion

Socket Exhaustion

- What is a socket?
- What is Maximum Segment Lifetime (MSL)?
 - How old is the Internet?
 - What is Time To Live (TTL) measured in?
- What is socket exhaustion?

Socket Exhaustion through the eyes of netstat

Socket exhaustion would look likethis:

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address For				Address	State	PID/Program name	
tcp	0	0 0.0.0.0:111	0.0.0.0:*	LISTEN	1339/rpcbind		
tcp	0	0 0.0.0.0:33586	0.0.0.0:*	LISTEN	1395/rpc.stc	ıtd	
tcp	0	0 192.168.122.1:53	0.0.0.0:*	LISTEN	1962/dnsmasq		
tcp	0	0 127.0.0.1:631	0.0.0.0:*	LISTEN	1586/cupsd		
tcp	0	0 127.0.0.1:25	0.0.0.0:*	LISTEN	2703/sendmo	ail: acce	
tcp	0	0 0.0.0.0:1241	0.0.0.0:*	LISTEN	1851/nessusc	d: waiti	
tcp	0	0 127.0.0.1:25	127.0.0.1:60365	TIME	E_WAIT -		
tcp	0	0 127.0.0.1:25	127.0.0.1:60240	TIME	_WAIT -		
tcp	0	0 127.0.0.1:25	127.0.0.1:60861	TIME	_WAIT -		
tcp	0	0 127.0.0.1:25	127.0.0.1:60483	TIME	_WAIT -		
tcp	0	0 127.0.0.1:25	127.0.0.1:60265	TIME	_WAIT -		
tcp	0	0 127.0.0.1:25	127.0.0.1:60618	TIME	_WAIT -		
tcp	0	0 127.0.0.1:25	127.0.0.1:60407	TIME	_WAIT -		
tcp	0	0 127.0.0.1:25	127.0.0.1:60423	TIME	_WAIT -		
tcp	0	0 127.0.0.1:25	127.0.0.1:60211	TIME	_WAIT -		
tcp	0	0 127.0.0.1:25	127.0.0.1:60467	TIME	_WAIT -		
tcp	0	0 127.0.0.1:25	127.0.0.1:60213	TIME	_WAIT -		

How to enable socket reuse

Enable socket reuse

```
echo 1 > /proc/sys/net/ipv4/tcp_tw_recycle
```

echo 1 > /proc/sys/net/ipv4/tcp_tw_reuse

Slowloris

Connection handling architectures

- Process based connection handling?
 - Think "Apache"

- Event based connection handling?
 - Think "nginx"

Slowloris

 Exploits the process based model but opening a number of concurrent connections and holds them open for as long as possible with the least amount of bandwidth possible

Slowloris mitigation

- Change of the software architecture
- Use of event driven reverse proxy to protect the server (like nginx)
- Implement challenges using Nginx plugin Roboo (ECL-LABS.ORG)
- Dedicated hardware devices

Lab: slowloris

- Open a web browser and go to the local web site
 - http://127.0.0.1
- Open a terminal
 - Go to the tools directory
 - Execute: ./slowloris.pl -dns 127.0.0.1

Refresh the browser a few times to see the effect on it page

Lab: slowloris mitigation

- Reconfigure Apache to switch to port 8088
 - /etc/apache2/ports.conf
 - Hint: Listen 80
 - /etc/apache2/sites-available/000-default.conf
 - Hint: <VirtualHost *:80>
 - Restart Apache
 - root@ubuntu:/etc/apache2# /etc/init.d/apache2 restart
- Reconfigure Nginx to listen on port 80
 - /etc/nginx/sites-available/default
 - Hint: listen 88
 - Restart Nginx
 - /etc/init.d/nginx restart
- Repeat the previous experiment

DNS Resolution

DNS resolution

- Authoritative
- Open recursive

- www.a10networks.com.
- www a10networks com <root>

What is DNS resolution?

 The process of mapping: www.a10networks.com => 191.236.103.221

DNS Reflection TODO: Reorganize

What is DNS reflection?

• What happens if an attacker forges the victim address as its source?

 ... and what if hundreds of misconfigured open DNS resolvers are used?

Two concepts to remember

Reflection

Amplification

What is reflected attack

- Attacker spoofs the source with the IP of the victim
- Reflectors respond to the victim

What is DNS reflection?

• What happens if an attacker forges the victim address as its source?

 ... and what if hundreds of misconfigured open DNS resolvers are used?

Reflective attacks

- Attacks where the an unwilling intermediary is used to deliver the attack traffic
- The attacker would normally send a packet with a forged source IP address to the intermediary. The forget address is going to be the one of the target. The intermediary will deliver a response which will go to the target instead of the attacker

Note to audience: think what protocols we can use for that?

Reflector types

- The ones that are of interest and provide amplifications are:
- DNS
- NTP
- SNMP
- SSDP

What is amplification attack?

 Asymmetric attack where response is much larger than the original query

Amplification attacks

- The response to a request exceeds it by a large factor
- Protocols:
- DNS
- NTP
- SNMP
- SSDP
- What else?

Consider this query

- Triggered by something like:
- dig ANY isc.org @3.3.3.3
- Example:~\$ dig ANY isc.org @172.20.1.1 # My home lab
- Flip over for answer

Consider this (cont'd)

ghostwood@sgw:~\$ dig ANY isc.org @172.20.1.1

;; ANSWER SECTION:

isc.org. 481 IN RRSIG DS 7 2 86400 20130607155725 20130517145725 42353 org. KHMs09DaFMx416/7xXhaD9By0NrqCiQ4kBnqi6oq2VocZRREAbUHHrAY KydlgKO5vOaw6l1Fy86/oiODkk3yyHspciwdJvjlefu4PktdUnd1IQxW 791q/jWgHBL5iQQigBYv7Z5IfY1ENn+6fPOchAywWqEBYcdqW8pzzOjz zlU=

isc.org. 481 IN DS 12892 5 2 F1E184C0E1D615D20EB3C223ACED3B03C773DD952D5F0EB5C777586D E18DA6B5

isc.org. 481 IN DS 12892 5 1 982113D08B4C6A1D9F6AEE1E2237AEF69F3F9759

isc.org. 5725 IN RRSIG A 5 2 7200 20130620134150 20130521134150 50012 isc.org. iCBy1Jj9P6mXVYjaSc62JClrZW+hvYAUGHo7WwRmxGRaipS8I9+LCvRl 2erglomkBP79m9ahnF0xWEAaueA6TIHClGxOkgrk3hBtMFjUB9rhvklm uxO2D8gc1DJDLl5egfpJCF2flTFhEvWzeMt6QGNwicWMxBsFHCxM7Fms D8I=

isc.org. 5725 IN A 149.20.64.42

isc.org. 5725 IN RRSIG DNSKEY 5 2 7200 20130620130130 20130521130130 12892 isc.org. dfxTGA/f6vdhulqojp+Konkdt8c4y3WiU+Vs5TjznvhdEyH14qPh/cHh +y1vA6+gAwTHI4X+GpzctNxiElwaSwVu3m9Nocniwl/AZQoL/SyDgEsl bJM/X+ZXY5qrgQrV2grOcKAAA91Bus3behYQZTsdaH2TStAKjKINEgvm yQ5xWEo6zE3p0ygtPq4eMNO4fRT9UQDhTRD3v3ztxFINXKvBsQWZGBH0 5tQcbC6xnGyn1bBptJEEGhCBG01ncJt1MCyEf98VGHKJFeowORiirDQ3 cjJRFPTCCkA8n4j8vnsimIUP/TGl +Mg4ufAZpE96jJnvFBsdcC/iOo6i XkQVIA==

isc.org. 5725 IN RRSIG DNSKEY 5 2 7200 20130620130130 20130521130130 50012 isc.org. o18F3KIFkYedFRw1e5MP4qDo3wSg0XK9I5WCYD75aGhs9RI5eyc/6KEW Se4IZXRhf6d77xXIerMYCrsfh/GHdjPRoE1xL/nzH/hTBJAI9XDbC5I/ EUpFIGVLVdQy43XKtywm0j2nyc5MdGa2VeLKo+hHTmH3St3pGRVJp2IK 5Z0=

isc.org. 5725 IN DNSKEY 257 3 5 BEAAAAOhHQDBrhQbtphgq2wQUpEQ5t4DtUHxoMVFu2hWLDMvoOMRXjGr hhCeFvAZih7yJHf8ZGfW6hd38hXG/xylYCO6Krpbdojwx8YMXLA5/kA+ u50WlL8ZR1R6KTbsYVMf/Qx5RiNbPClw+vT+U8eXEJmO20jlS1ULgqy3 47cBB1zMnnz/4LJpA0da9CbKj3A254T515sNIMcwsB8/2+2E63/zZrQz Bkj0BrN/9Bexjpiks3jRhZatEsXn3dTy47R09Uix5WcJt+xzqZ7+ysyL KOOedS39Z7SDmsn2eA0FKtQpwA6LXeG2w+jxmw3oA8lVUgEf/rzeC/bB yBNsO70aEFTd

isc.org. 5725 IN DNSKEY 256 3 5 BQEAAAABwuHz9Cem0BJ0JQTO7C/a3McR6hMaufljs1dfG/inaJpYv7vH XTrAOm/MeKp+/x6eT4QLru0KoZkvZJnqTl8JyaFTw2OM/ltBfh/hL2lm Cft2O7n3MfeqYtvjPnY7dWghYW4sVfH7VVEGm958o9nfi79532Qeklxh x8pXWdeAaRU=

a.root-servers.net. 297269 IN A 198.41.0.4

a.root-servers.net. 415890 IN AAAA 2001:503:ba3e::2:30

b.root-servers.net. 298007 IN A 192.228.79.201

c.root-servers.net. 297373 IN A 192.33.4.12

Reflection and Amplification

S: **191.236.103.221** D: 3.3.3.3

What is ANY isc.org

S: 3.3.3.3 D: **191.236.103.221**

```
ghostwood@sgw:-$ dig ANY isc.org @172.20.1.1
 , ANSWER SECTION:
               481 IN RRSIG DS 7 2 8 6 4 0 0 2 0 1 3 0 6 0 7 1 5 5 7 2 5 2 0 1 3 0 5 1 7 1 4 5 7 2 5 4 2 3 5 3
org. KHIVs09 DaFIVs41 6/7xXhaD9By0 Nrq ClQ4kBnqi6 aq2V acZRRE AbUHH AY
KydlgKO5vOavv611Fy86/oiODkk3yyHap ciwdJvjJefu4PkHd Und 1 IQxW79 1 q/
jWb HBL5iQQigBYv7Z5iP(1ENn+6fPOchAyvWVqEBYcdq W8pzzOjzzIU=
isc.org. 481 IN DS 1289252
F1E184C0E1D615D20EB3C223ACED3B03C773DD952D5f0EB5C777586DE18DA6B5
               481 IN DS 1289251
9821 13D08 B4C6 A 1D9F6 A EE1 E2237 A EF69F3 F97 59
            5725 IN RRSIG A 5 2 7 200 2013 0 6 2013 0 5 2013 0 5 211 3 4 1 5 0 5 0 0 1 2
isc.org.iC8y1Jj9P6mXVYjaSc62JCrZW+hvYAUGHb7WwRmxGRaipS8I9+LO/RI
2eralomkBP79m9ahnFOxWEAaueA6TIHClGxOkark3hBtfVFiLB9rhvktm
uxO2D8gc1DJDU5egfpJCF2ffFhEvWkeWH6QGNvicWWk6sFHCxM7FmsD8l=
              5725 IN A 149.20.64.42
              5725 IN RRSIG DNSKEY 5 2 7 200 2013 0 6 2013 0 130 2013 0 5 211 30 130
12892 isc.org. dfxTGA/f6vd hulqojp+Konkdt8c4y3VNU+Vs5TjznvhdEyH14qPh/cHh
ty I vA 6+gAwiTH4X+GpzctNviElvasWV u3m9Nocniw/AZQoL/SyDg Esl bJM/
X+ZXY5argQrV2grOcKAAA91 Bus3be hYQZTsdaH2TStAKjKINEgvm
yQ5xWEo6zE3p0yg Pq4 eMNO4fRT9UQDhTRD3x8ztxFNXKx8zQWZG8H0
5tQcbC6xnGyn1b8ptJEEGhC8G01ncJH1MCyEf98VGHKJFeovyORiirDQ3
cjJRFPTCCkA8n4BvnsimIUP/TGI+Mg 4ufAZpE96jJhvFBsd cC/iOc6i XkQVIA==
isc.org. 5725 IN RRSIG DNSKEY5 27200 20130520130130 20130521130130
5001 2 isc.org. o 18F3 KIR:Yed FR.wle5 MP4qDo 3w8g0 X k9 i5 WCYD75 aGhs9 Ri5 eyc/6KEW
Se4IZXRhf6d77xXlerMYO:sfh/GHdjPRoE1xL/nzH/hTBJAI9XDbC5I/
EUb FIGVLVd Qy43 XKty wm0 j2 nyc5lVtl Ga 2V eUKo+hHT mH33t3pGRV Jp2 IK5Z0=
              5725 IN DNSKEY 2573 5
BEAAAAOhHQDBrhQbtphgg2wQUbEQ5t4DtUHxoMVFu2hWLDMxoOMRXjGr
hhCeFvAZih7yJHf8ZGfW6hd38hXG/xyIYCO6Krpbdojwx8YMXLA5/kA+
u50WL8ZR1R6KTbsYVMf/Qx5RNbPClw+v7+L8eXEJmO20j81ULgqy3 47cB81zMnrz/
4LJpA0da9CbK3A254T515sNIMewsB8/2+2E63/zZrQz BkDBrN/
9Bexipiks3jRhZafEsXn3dTy47R09Lix5VVcJ+taxqZ7+ysyL
KOOed839 Z78Dmen2 eA0FK/SQp vA6LXeG2 vrijom v8oA8 IV Ug Ef/raeC/bB yBNsO70oEFTd isc.org. 57 25 IN DNSKEY 256 3 5 BQEAAAA BwuHz9 Cem0BJ0JQTO7 C/
a3 MERáhl/b uf ígil dfG/ina JpYv7vH XTrA Om/MeKp+/xá eT4QLru0KoZkvZJngTl8 Jya FTv2OM/
HBfh/hL2 Im Cft2O7n3 MfegYtvjPnY7dWghYW4sVfH7V VEGm958o9nf79532Qeklxh
x8pXWde Aa RU⊨
               5725 IN DNSKEY 2563 5 BQEAAAA BwuHz9 Cem0BJ0JQTO7 C/
a3 McRóhMb uflig I dfG/ina JpYv7vH XTrAOm/MeKp+/xóeT4QLru0KoZkvZJnqTl8Jya Ff vv2OM/
HBfh/hL2Im Cff2O7n3MfeqYtvjPnY7dWghYW4sVfH7VVEGm958o9nf79532Qeklxh
x8pXVVde Aa RU=
aroot-serversnet, 297269 IN A 198.41.0.4
avoiot-serversinet. 415890 IN AAAA 2001:503:ba3e::2:30
biolot-serversnet, 298007 IN A 192,228,79,201
croot-serversinet, 297373 IN A
                                    192.33.4.12
disopt-serversinet, 297555 IN A 199.7.91.13
disopt-serveranet, 417805 IN AAAA 2001:500:2d::d
e.rolot-servers.net. 297707 IN A 192.203.230.10
froid-serversinet, 2975.44 IN A 192.5.5.241
froiot-serversinet. 41 61 52 IN AAAA 2001:500:2f::f
groot-serversinet, 297708 IN A 192.112.36.4
 hiro of-serversinet. 298308 IN A 128.63.2.53
h.ro of-servers.net. 41 6776 IN AAAA 2001:500:1::803f:235
```

iro otservers net 297617 IN A 192.36.148.17

3.3.3.3

DNS Rate limits

 Not specified for recursive but you can still tweak it to something that works for you

Configuration example:

```
rate-limit {
    responses-per-second 5;
    window 5;
};
```

• Reference:

http://www.redbarn.org/dns/ratelimits

Proper resolver configuration

```
acl "trusted" {
         192.168.0.0/16;
         10.153.154.0/24;
         localhost;
         localnets;
options {
         allow-query { trusted; }; // allow-query { any; };
         allow-recursion { trusted; };
         allow-query-cache { trusted; };
         . . .
```

Large scale mitigation and load distribution: Anycast

- Multiple points of presence advertise the same address space
- Network ensures user is routed to the "closest" instance

IPS/DDoS mitigation gear

- Depends on vendor
- Different techniques
- Different mitigation rates for different packet types

Network Time Protocol (NTP)

NTP servers

- Stratum servers
- NTP queries

- MONLIST command
 - provides
 a list of clients that have
 time readings

What's next?

Good Internet citizenship

Mitigations

- Defend yourself
 - Anycast
 - Some form of IPS/DDoS mitigation gear
 - Overall network architecture
- Defend the Internet
 - Rate-limiting
 - BCP38/140 (outbound filtering) source address validation
 - Securely configured DNS, NTP and SNMP servers
 - No open resolvers
- Talk to the professionals

Are you noticing the imbalance?

Defend yourself

- Anycast (DNS)
- Some form of IPS/DDoS mitigation gear

Lots of money

Defend the Internet

- Rate-limiting
- BCP38/140 (outbound filtering) source address validation
- Securely configured authoritative DNS servers
- No open resolvers
- Somewhat cheap

What's the point I'm trying to make?

- It's not feasible to mitigate those attacks single handedly
- We need cooperation
- Companies need to start including "defending the Internet from themselves" as a part of their budget – not only "defending themselves from the Internet"

What can I do about it?

- RFC 2827/BCP 38 Paul Ferguson
- If possible filter all outgoing traffic and use proxy
- uRPF
- BCP 140: "Preventing Use of Recursive Nameservers in Reflector Attacks"
- http://tools.ietf.org/html/bcp140
- Aka RFC 5358

Bnt MHAšišiš

Why would you ever want to run an open DNS resolver?

- OpenDNS/Google DNS
- Authoritative name servers (non-recursive of course)
- Because you have not read the Cricket book

Are you a reflector?

In some cases return traffic/backscatter

Resources

- DNS
- http://openresolverproject.org/
- NTP
- http://openntpproject.org/
- If you see your IP space in the lists provided by those sites resolve it

Summary

- Discuss what DDoS is, general concepts, adversaries, etc.
- Go through a networking technology overview, in particular the OSI layers, sockets and their states, tools to inquire system state or capture and review network traffic
- Dive into specifics what attack surface the different layers offer
- Discuss reflection, amplification and back scatter
- Terminology
- Tools

Thank you