Open Resolver Project

Results from ~3 months of active scans

http://www.openresolverproject.org
Background

• Lack of BCP-38/anti-spoofing/uRPF means open resolvers can be used in DNS amplification attacks
• Small DNS packet can illicit large reply
• Lack of RRL means authority and recursive resolvers can be abused
• Historically defaults were more permissive in software (open relays, directed-broadcast, etc)
• No inventory available for teams to cross-reference with attack traffic
Open Resolvers pose a significant threat to the global network infrastructure by answering recursive queries for hosts outside of its domain. They are utilized in DNS Amplification attacks and pose a similar threat as those from Smurf attacks commonly seen in the late 1990s.

We have collected a list of 33 million resolvers that respond to queries in some fashion. 28 million of these pose a significant threat (as of 26-MAY-2013). Detailed History and Breakdown

Check my IP space

Search my IP space (eg: 192.0.2.0/24 - searches "larger" than /22 will be rejected): 6.8.8.8

ipv4-heatmap of 20130519 data heatmap archive

What can I do?

If you operate a DNS server, please check the settings.

Recursive servers should be restricted to your enterprise or customer IP ranges to prevent abuse. Directions on securing BIND and Microsoft nameservers can be found on the Team CYMRU Website. If you operate BIND, you can deploy the TCP-ANY patch

Authoritative servers should not offer recursion, but can still be used in an attack. Configure your Authoritative DNS servers to use DNS RRL [Response Rate Limiting] Knot DNS and NLNetLabs NSD include this as a standard option now. BIND

If you are in the security community:

Please contact dns-scan /at/ puck.nether.net for access to raw data.

Additional Information

Informações em Português

We can provide you a List of Open Resolvers by ASN if you e-mail dns-scan /at/ puck.nether.net

Test your IP Now!
Methodology

• IPv4-only Scan runs weekly (0 UTC Sundays)
• Takes 6.5 hours
• One packet per IP (skips 10/8 127/8 192.168/16)
• Sends about 170kpps
More Methodology

• A.B.C.D
 – Walks IP space sparsely (1.0.0.0, 2.0.0.0 ... 223, 1.1.0.0.. 223.1.0.0
 – First few weeks incremented linearly through space. New method catches more resolvers

• Single host doing Scanning and Data collection
 – Process waits just 60 seconds after last packet sent to capture last data.
 – Get responses for hours and days later from broken hosts

• DNS QNAME is unique per-IP

• Query-ID is last two octets of IPv4 address
Complaints?

• Get a few complaints each week, but have tapered off
• ISP Abuse Team was pre-informed of activities
• They have a template to auto-respond to people
Greetings,

X.X.X.X is part of a research project to map out open resolvers on the internet. The contact for this research project is dns-scan@puck.nether.net. You can also read a bit more about this project at http://openresolverproject.org

Open Resolvers pose a security threat as they are used in DNS amplification attacks. You can read about them here: https://www.google.com/search?q=dns+open+resolver+amplification+attack

Let us know if you have additional questions or concerns.

Regards,
NTT Communications Global IP Network Security Team
Results

• Generates about 9.5GB of raw data per week
• Captures unix time_t, IP Address, Port and data packet

• 1367734028.41022:112.207.253.255:14432:fdff81800001000200030004083339383662346236136f70656e7265736f6c766572706f6a656374036f726700000010001c00c00000000100000e100002c015c0150001000100000ca50004cc2afe05c0150002000100000ca500120574686f726e09626c61636b726f7365c029c0150002000100000ca500000f05616e796e7303706368036e657400c0150002000100000ca50000e047075636b066e6574686572c084c095000100010013bf20004cc2afe05c095001c000100013bf200102001041803f400000000000000000000005c07a00010001001304c00004cc3dd804c05c000100010000fbd0004cc2afe07
Weekly Statistics

2013-06-02 results

34,227,822 servers responded to udp/53 probe
31,860,982 unique IPs
320,493 IPs responded more than once
797,657 servers responded from a different IP than probed
29,207,283 gave the correct answer to the A? for the DNS name queried
14,951,390 responded from a source port other than udp/53
29,720,118 responses had recursion-available bit set
30,558,673 returned OK (RCODE=0)
5,654 returned FORMERR (RCODE=1)
548,423 returned SERVFAIL (RCODE=2)
183,022 returned NAMEFAIL (RCODE=3)
103 returned NOTIMP (RCODE=4)
2,930,646 returned REFUSED (RCODE=5)
Unique IPs

0 5000000 10000000 15000000 20000000 25000000 30000000 35000000
1 2 3 4 5 6 7 8 9 10 11

Unique IPs
REFUSED trend

REFUSED

REFUSED Responses
2542521 2471484 2761880 2827137 2904256 2835696 2947866
9.11% 9.09% 8.77% 8.32% 8.87% 8.40% 8.94%

2200000 2300000 2400000 2500000 2600000 2700000 2800000 2900000 3000000
1 2 3 4 5 6 7 8 9 10 11

Many devices do something odd..

• Many CPE devices listen on WAN interface
 – skb broadband is most common version.bind
• Android phones become open resolvers with tethering
• 0.18% respond with RA (recursion available) but wrong answer
• 46% of hosts respond from non port 53
UDP/53 is for DNS, right?

Sending a packet to UDP/53 gets a reply from another port

02:17:56.649949 IP x.x.x.x.45946 > 88.248.189.4.domain: 34307+ [lau]
TXT CHAOS? version.bind. (41)
 0x0000: 4500 0045 72ca 0000 4011 28b4 xxxx xxxx E..Er...@.(..*..
 0x0010: 58f8 bd04 b37a 0035 0031 df6c 8603 0120 X.....z.5.1.l....
 0x0020: 0001 0000 0000 0001 0776 6572 7369 6f6eversion
 0x0030: 0462 696e 6400 0010 0003 0000 2910 0000 .bind........)
 0x0040: 0000 0000 00

02:17:56.908332 IP 88.248.189.4.10002 > x.x.x.x.45946: UDP, length 62
 0x0000: 4500 005a 45a6 4000 f411 61c2 58f8 bd04 E..ZE.@...a.X...
 0x0010: xxxx xxxx 2712 b37a 0046 85bb 8603 8500 .*'..z.F......
 0x0020: 0001 0001 0000 0001 0776 6572 7369 6f6eversion
 0x0030: 0462 696e 6400 0010 0003 c00c 0010 0003 .bind...........
 0x0040: 0000 0000 0009 0839 2e38 2e31 2d50 31009.8.1-P1.
 0x0050: 0029 1000 0000 0000 0000 .).........
Other hosts respond

• 3.6% of IPs probed had another IP respond back
• Typically CPE that did NAT on WAN interface
 – CPE respond to network and broadcast addresses
 – Host/CPE is allowed to spoof my IP
 – Provides small map of providers without BCP-38
Remediation Response

• Given out thousands of ASN reports
 – LINX contacting members
• Some providers have mitigated most resolvers
• Hosting providers contacting customers to disable open resolvers
 – http://status.ovh.net/?do=details&id=4802
• Continue to get more feedback
• Japan Telecom-ISAC started project to fix networks, including CPE
• E-Mailed reports to top-ASNs with open resolvers
Remediation Response

• NTT has restarted project to lock-down packet spoofing at network edge
 – First weeks of reports had more bogons that replied
 – Much better now
• Many folks reconfigured bind
• Even with recursion off you need:
 – additional-from-auth no;
 – additional-from-cache no;
• Hosting providers are changing defaults
Thank You & Questions?

• Thanks to:
 – NTT Communications
 – Merike Kaeo
 – Aaron Kaplan
 – Heather Schiller
• Please Visit www.openresolverproject.org
• RRL
 – http://www.redbarn.org/dns/ratelimits
• TCP ANY patch
 – http://puck.nether.net/~jared/bind-9.9.3rc2-tcp-any.patch
• QUESTIONS?