

Traffic Diversion Techniques for DDoS Mitigation using BGP Flowspec

Leonardo Serodio

leonardo.serodio@alcatel-lucent.com

May 2013

Distributed Denial of Service (DDoS) Attacks

······Alcatel·Lucent

Cloud-based DDoS Defense with RTBH BGP Announcement Originated by the Victim

Fourth most used tool to mitigate DDoS attacks [5]
RFCs: RFC 3882, RFC 5635 (includes D/RTBH and S/RTBH)

Cloud-based DDoS Defense with RTBH BGP Announcement Originated by the SP

••••••••••••• Alcatel • Lucent 🥠

BGP Flow Specification

- BGP Flowspec defines a new BGP Network Layer Reachability Information (NLRI) format used to distribute traffic flow specification rules.
 - NLRI (AFI=1, SAFI=133): IPv4 unicast filtering
 - NLRI (AFI=1, SAFI=134): BGP/MPLS VPN filtering
- Specified by RFC 5575 [1], extended to IPv6 in [2]
- Main application today is to automate the distribution of traffic filter lists to routers for the mitigation of DDoS attacks.
 - Selectively drop traffic flows based on L3/L4 information.
 - Intelligent control platform builds filter rules to drop harmful traffic, encodes them as BGP flowspec routes and advertises them to BGP peers.

BGP Flow Specification

- The Flow specification can match on the following criteria:
 - Source / Destination Prefix
 - IP Protocol (UDP, TCP, ICMP, etc.)
 - Source and/or Destination Port
 - ICMP Type and Code
 - TCP Flags
 - Packet Length
 - DSCP (Diffserv Code Point)
 - Fragment (DF, IsF, FF, LF)
- Actions defined using Extended Communities:
 - 0x8006: traffic-rate (rate 0 discards all traffic for the flow)
 - 0x8007: traffic-action (sample)
 - 0x8008: redirect to VRF
 - 0x8009: traffic-marking (DSCP value)

BGP Flow Specification – Why Use It for ACLs?

- ACLs are still the single most widely used tool to mitigate DDoS attacks [5].
 - But...ACLs are demanding in configuration & maintenance.
- BGP Flowspec leverages the BGP Control Plane to simplify the distribution of ACLs, greatly improving operations:
 - Inject new filter rules to all routers simultaneously without changing router configuration.
 - Reuse existing BGP operational knowledge and best practices.
 - Control policy propagation via BGP Communities.

- Improve response time to mitigate DDoS attacks.
- Route validation performed for eBGP sessions, see draft
 [3] for revised validation procedure for iBGP sessions.

Cloud-based DDoS Defense with BGP Flowspec Inter-domain flowspec injection

Cloud-based DDoS Defense with BGP Flowspec Intra-domain flowspec injection

BGP Flow Specification – Vendors & Users

- Router vendors supporting BGP Flowspec:
 - Alcatel-Lucent 7750 SROS 9.0R1
 - Juniper JunOS 7.3
- DDoS mitigation vendors:
 - Arbor Peakflow SP 3.5
- BGP Tools:
 - ExaBGP Injector [7]
- Users:
 - North America: TW Telecom (TWTC) [6], other Tier 1, Tier 2
 - Europe: Tier 1, Tier 2
 - Latin America & Caribbean: RNP (Brasil) [8]

- Flowspec itself is the 8th most used tool to mitigate attacks [5]

DDoS attacks: Increasing Scale & Sophistication

DDoS Attack Bandwidth (Gbps)

Size of Largest Reported DDoS Attack (Gbps)

Source: Arbor Networks - 2012 Worldwide Infrastructure Security Report, Volume VIII

Volumetric Attacks Network Infrastructure

AT THE SPEED OF IDEAS™

DDoS Protection with Mitigation Appliance (IDMS) "Surgical Mitigation"

- Traffic anomaly is scrubbed by a DPI-capable mitigation appliance that **surgically** removes the attack traffic only.
- Mitigation appliances are also known as Intelligent DDoS Mitigation Systems (IDMS). IDMS are the second most used tool for DDoS protection [5].
- Able to mitigate complex, application-layer DDoS attacks without completing the attack.
- Typically a <u>shared resource</u> in the network infrastructure.
- Traffic anomalies need to be redirected in the network to go through the IDMS before reaching the intended destination:
 - Traffic Diversion or Offramping
 - Traffic Reinjection or Onramping

.

IDMS-based DDoS Mitigation Terminology

- Diversion or Offramping: rerouting of traffic destined to the victim to the DDoS mitigation appliance for scrubbing.
- Reinjection or Onramping: redirection of scrubbed (clean) traffic back to its intended destination.
- Typically, traffic diversion takes place through more specific BGP prefix announcements (victim addresses), usually in the GRT (called diversion/offramp route):
 - Easier to control & manipulate routes (NH, Communities)
 - Can be signaled across AS boundaries if required

 Traffic Reinjection usually requires tunneling or an alternate routing domain (VRF) to get clean traffic back to its intended destination without looping.

IDMS-based DDoS Mitigation Scrubbing Center Design

AT THE SPEED OF IDEAS™

IDMS-based DDoS Mitigation Distributed Design – Embedded IDMS

Traffic Diversion with BGP Prefixes – The Good & The Bad

• Real mitigation of DNS attack

DDoS Mitigation Appliance – "Surgical Diversion" Using BGP Flowspec "Redirect to VRF" Action

"Surgical Diversion" Using BGP Flowspec – Optimized Design & Operation

- No changes to the Global Routing Table (GRT)
 - Diversion performed by Flowspec NLRI
 - Flowspec filter Action configured to "Redirect to VRF"
 - Extended Community 0x8008.
 - Less intrusive to the routing system

.

- No need for a tunneling design for reinjection/onramping
 - Clean traffic can simply be sent back to the GRT
- More granular control of diverted traffic
 - Allows for the redirection of only a subset of the traffic to the victim: specific protocols, ports, source prefix, destination prefix
 - Less traffic overhead for Mitigation Appliance to deal with

"Surgical Diversion" Using BGP Flowspec – Enabling New Workflows

- Facilitates the implementation of new mitigation workflows for demanding use cases:
 - "Always on" Mitigations for critical resources:
 - HTTPS traffic only (normal web traffic follows on-demand mitigation model)
 - ICMP & UDP traffic
 - Victims with very large traffic volume

.....

 Divert just traffic from a certain block, or geographical region (based on IP Location)

"Surgical Diversion" for Data Centers – Optimizing the Mitigation of Application-Layer DDoS Attacks

- On-demand or continuous mitigation of selective traffic
- Benefits of continuous DPI traffic scrubbing without the risks and demands of in-line deployments.

BGP Flowspec Diversion – Work in Progress

- New "Redirect to IP Next-Hop" Flowspec Action
 - Described in draft-simpson-idr-flowspec-redirect-02.txt [4]
 - New Extended Community value 0x0800
- Enables BGP flowspec redirection using encapsulations other than VRFs, such as GRE or MPLS tunnels.

Summary – "Surgical Diversion" Benefits Using BGP Flowspec:

- Greatly simplifies traffic diversion design and operation:
 - Less intrusive to the routing system no changes to the Global Routing Table (GRT).
 - On the reinjection side, there is no need to use tunneling (GRE) or VRF designs.
- Optimizes the benefits of a DDoS Mitigation Appliance ("surgical mitigation") with precise diversion:
 - Allows for a better optimization of the shared mitigation capacity of the mitigation appliance.
 - Addresses demanding mitigation use cases.
 - On-demand & continuous scrubbing per application or other criteria.

References:

- [1] RFC 5575, Dissemination of Flow Specification Rules
- [2] draft-ietf-idr-flow-spec-v6-03 Dissemination of Flow Specification Rules for IPv6
- [3] draft-ietf-idr-bgp-flowspec-oid-01 Revised Validation Procedure for BGP Flow Specifications
- [4] draft-simpson-idr-flowspec-redirect-02.txt BGP Flow-Spec Extended Community for Traffic Redirect to IP Next Hop
- [5] Arbor Networks 2012 Worldwide Infrastructure Security Report, Volume VIII
- [6] 2006 NANOG 38, D. Gassen, R. Lozano (Time Warner Telecom), D. McPherson, C. Labovitz (Arbor Networks), "BGP Flow Specification Deployment Experience"
- [7] 2010 LINX69, Thomas Mangin (Exa Networks), Andy Davidson (NetSumo), "BGP Route Injection" http://www.andyd.net/media/talks/BGPRouteInjection.pdf
- [8] GTER/GTS 2007, Raniery Pontes (RNP), "Flowspec em ação -Experiência de uso no backbone da RNP"

www.alcatel-lucent.com

