464XLAT: Breaking Free of IPv4

Cameron.Byrne @ T-Mobile.com

NANOG 61

June 2014
Goals of Talk

1. Declare victory for IPv6
2. Explain IPv6-only approach at T-Mobile US
3. Discuss risks related to IPv4-only operations for content providers and App makers
Background

- T-Mobile US is a GSM / UMTS / LTE provider in the USA with 49 Million subscribers
- In 2008, T-Mobile launched the first Android phone. This dramatically changed the mobile data dynamics – more devices, connected for a longer time, all needing IP addresses
- T-Mobile embraced the concept of IPv6-only, since dual-stack required IPv4 that was not available
- NAT64 / DNS64 was a good solution that did not require IPv4 on each client, but some applications failed to work on IPv6-only networks. It is not acceptable to break Spotify or Whatsapp, applications that require IPv4
- T-Mobile, in partnership with NEC and JPIX, documented 464XLAT in the IETF as RFC6877 to overcome the limitations of NAT64 by adding a NAT46 into the client (CLAT)
- Android 4.3 introduced support for 464XLAT in October 2013
- **T-Mobile US changed the default settings for all Android 4.3+ phones to be IPv6-only / 464XLAT**
Results Are Important

• T-Mobile US launched 8 Android phone models with 464XLAT as the default in the last 8 months, all Android 4.3+ phones will be 464XLAT in the future at T-Mobile US

• 8 million unique IPv6 subscribers in the first 8 months are active on the network

• http://www.worldipv6launch.org/measurements/ measurements show 27% of all T-Mobile connections to dual-stack sites are now IPv6

• **Over 50% of IPv6-user traffic is end-to-end IPv6 (no translation needed)** — *This saves money and makes the network simpler*
27% of T-Mobile US Connections use IPv6 to Dual-Stack content
Other major networks on IPv6

- Comcast IPv6 Deployment
- AT&T IPv6 Deployment
- Verizon Wireless IPv6 Deployment
- Time Warner Cable IPv6 Deployment
464XLAT allows for full functionality on IPv6-only networks

- Dual-stack does not solve the IPv4 number scarcity issue
- IPv6-only + NAT64/DNS64 is very good, but not good enough for full IPv4 replacement (web and email work, but Skype does not work)
- IPv6-only + 464XLAT
 - Solves IPv4 numbering issue by not assigning IPv4 to clients
 - Decouples edge growth from IPv4 availability
 - IPv4-only applications like Skype work on an IPv6-only network because 464XLAT translates IPv4 on the phone to IPv6 on the network
Why not MAP or DS-lite

- Mobile networks don’t use DHCP, so no way to setup MAP or DS-lite without some heavy lifting in protocols and standards
- Purely stateless solutions like MAP require many IPv4 addresses to be statically assigned to the MAP domain
- Stateful NAT64 allows greater multiplexing of IPv4 addresses, even port overloading to get beyond 64,000 sessions per IPv4
IPv6 deployment is achievable

• T-Mobile USA did not spend any CapEx on IPv6
• Only introduce 464XLAT on new phones, so we do not disrupt any existing services, leverage normal phone QA process
• Innovative thinking helps reduce deployment costs (hash 128 bit numbers into 32 bit fields in billing records)
• IPv6 will save money in your network (less NAT/CGN, no need to buy IPv4 addresses, ...)

Which Platforms Supports 464XLAT Today?

• YES
 • Android 4.3+

• NO
 • Blackberry
 • Apple
 • Windows Phone (?)
THE TECHNICAL DETAILS
464XLAT is just a set of building blocks

- Stateless NAT64 (RFC6145)
 - Client side translation CLAT (NAT4->6)
- Statefull NAT64 (RFC6146)
 - Provider site translation PLAT (NAT6->4)
- DNS64 (RFC 6147)
 - When the FQDN does not have a AAAA record, DNS64 dynamically creates one that allows the client to use IPv6 and the network translates from IPv6 to IPv4 at the NAT64
- Prefix64 Discovery (RFC 7050)
 - Queries for the well-known FQDN ipv4only.arpa, which is by definition IPv4-only. If there is a AAAA response provided, then it is known that a DNS64 is in the path
3 Scenarios in a 464XLAT network

1. End-to-end IPv6: Facebook, Google, Wikipedia, Yahoo, Youtube ... **IPv6->IPv6**

2. Application supports IPv6 (web browser) but the server is only IPv4 (www.myspace.com, www.twitter.com, www.amazon.com, ...), so DNS64/NAT64 translates **IPv6->IPv4**

3. Application does not support IPv6 (Whatsapp, Spotify, ...), the client must provide a stateless NAT46 to the application and stateful NAT64 must be in the network: **IPv4->IPv6->IPv4**
3 Scenarios of 464XLAT

End to End IPv6

IPv6

NAT64

IPv4

IPv6

IPv4

NAT46

IPv6

NAT64

IPv4

IPv4
How does Stateless NAT64 work?

- Algorithmically map IPv4 addresses to IPv6 addresses, bidirectional, 1 to 1
 - Not dynamic
 - Deterministic
 - Maps all of IPv4’s 32 bits into an IPv6 /96 (or larger prefix)
- Defined in RFC6145
- Example
 - 2001:db8::10.1.1.1 <-> 10.1.1.1
 - 2001:db8::10.2.2.2 <-> 10.2.2.2
 - 2001:db8::www.example.com <-> ipv4
 www.example.com
How does Stateful NAT64 work?

• Dynamically translate IPv6 packets to IPv4 packets
 • Dynamic
 • Not deterministic (translation based on available IPv4 pool)
 • Translation state is short-lived and based on session creation and termination
• Defined in RFC6146
• Example
 • Before translation
 • TCP source 2001:db8:abcd::fffe port 555 # client address
 • TCP destination 2001:db8:1234::10.1.1.1 port 80 # NAT64 address
 • After translation
 • TCP source 192.168.1.1 port 555 # 192.168.1.1 available from NAT64 pool
 • TCP destination 10.1.1.1 port 80 # Last 32 bits of IPv6 destination
How does DNS64 work?

• When an FQDN does not have a AAAA record, the DNS64 will synthetically create one based on a network defined Pref64
• The pref64 is a prefix hosted on the NAT64 for translation
• Example without DNS64
 • Query = a and aaaa for www.example.com
 • Answer = a = 10.1.1.1, aaaa = NO ERROR
• Example with DNS64
 • Query = a and aaaa for www.example.com
 • Answer = a = 10.1.1.1 AND aaaa = 2001:db8::10.1.1.1
How to make EVERYTHING work on IPv6-only?
Zoom Out: What does this look like in the context of 3GPP GSM / UMTS / LTE ?
High Level View of IPv6 deployment:
Phone, HLR profile, GGSN, NAT64, IPv6 ISP

MSISDN Profile

HLR

NAT64

DNS64

IPv4/IPv6 Internet

Green Means IPv6 added

RAN (no ipv6 in RAN, access network, cell sites, mobile backbone, …)
Zoom in: What does the phone configuration look like: APN Settings

In Android 4.3, “APN Protocol IPv6” for the “APN Type default” triggers the use of 464XLAT by default

IPv6 = 464XLAT
TIME FOR WIRESHARK
Like most things, we start with DNS

- The client is IPv6-only towards the network, but the host OS thinks it is dual-stack since it has an IPv4 CLAT interface and a native IPv6 radio interface
- So, the client does a query for DNS “A” and “AAAA” records
- The DNS64 responds with a synthesized AAAA and the real A
- The synthesized AAAA = Pref64 + real IPv4
Quick Check

• Does the synthesized AAAA match the pref64 + real A?

[cbyrne@chair6 ~]$ ping6 -c 1 2607:7700::206.29.178.93
PING6(56=40+8+8 bytes) 2607:f2f8:a8e0::2 --> 2607:7700::c1d:b25d

Hex

pref64

Real IPv4
Next, the UE selects the IPv6 DNS response, and starts TCP

- From the client perspective, this is a native IPv6 end-to-end flow
- But, we know that the DNS is a synthesized AAAA and the client is actually sending its packets to the NAT64 for IPv6->IPv4 stateful translation
- This is just DNS64 / NAT64, no client-side translation needed for this scenario
The full case of 464XLAT double translation: WhatsApp

 Queries
 e8.whatsapp.net: type AAAA, class IN
 Name: e8.whatsapp.net
 Type: AAAA (IPv6 address)
 Class: IN (0x0001)

 Answers
 e8.whatsapp.net: type AAAA, class IN, addr 2607:7700:0:14::b8ad:a1ba
 Name: e8.whatsapp.net
 Type: AAAA (IPv6 address)
 Class: IN (0x0001)
 Time to live: 48 minutes, 25 seconds
 Data length: 16
 Addr: 2607:7700:0:14::b8ad:a1ba
 e8.whatsapp.net: type AAAA, class IN, addr 2607:7700:0:14::3216:e142
 Name: e8.whatsapp.net
 Type: AAAA (IPv6 address)
 Class: IN (0x0001)
 Time to live: 48 minutes, 25 seconds
 Data length: 16
 Addr: 2607:7700:0:14::3216:e142
 e8.whatsapp.net: type AAAA, class IN, addr 2607:7700:0:14::6ca8:ae02
 Name: e8.whatsapp.net
 Type: AAAA (IPv6 address)
 Class: IN (0x0001)
 Time to live: 48 minutes, 25 seconds
 Data length: 16
 Addr: 2607:7700:0:14::6ca8:ae02
SYN is sent from the CLAT address

Remember, we set the clatd.conf to use the IID of ::464 for CLAT translations
• IPv6 is widely deployed today!
<table>
<thead>
<tr>
<th>Rank</th>
<th>Website</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>google.com</td>
<td>Enables users to search the world's information, including webpages, images, and videos. Offers... More</td>
</tr>
<tr>
<td>2</td>
<td>facebook.com</td>
<td>A social utility that connects people, to keep up with friends, upload photos, share links and ... More</td>
</tr>
<tr>
<td>3</td>
<td>youtube.com</td>
<td>YouTube is a way to get your videos to the people who matter to you. Upload, tag and share your... More</td>
</tr>
<tr>
<td>4</td>
<td>yahoo.com</td>
<td>A major internet portal and service provider offering search results, customizable content, cha... More</td>
</tr>
<tr>
<td>5</td>
<td>amazon.com</td>
<td>Amazon.com seeks to be Earth's most customer-centric company, where customers can find and disc... More</td>
</tr>
<tr>
<td>6</td>
<td>linkedin.com</td>
<td>A networking tool to find connections to recommended job candidates, industry experts and busin... More</td>
</tr>
<tr>
<td>7</td>
<td>wikipedia.org</td>
<td>A free encyclopedia built collaboratively using wiki software. (Creative Commons Attribution-Sh... More</td>
</tr>
<tr>
<td>8</td>
<td>ebay.com</td>
<td>International person to person auction site, with products sorted into categories.</td>
</tr>
<tr>
<td>9</td>
<td>twitter.com</td>
<td>Social networking and microblogging service utilising instant messaging, SMS or a web interface.</td>
</tr>
<tr>
<td>10</td>
<td>bing.com</td>
<td>Search engine developed by Microsoft. Features web, image, video, local, news, and product search.</td>
</tr>
</tbody>
</table>
Major eye-ball networks have enabled IPv6 – T-Mobile US, Comcast, Verizon, AT&T, …
Scale: Internet of things needs IPv6
Scale: Cloud needs IPv6
Lesson Learned

1. IPv6-only works
2. IETF works for operators (making sausage is not pretty, but it works)
3. Breaking stuff is not ok
4. Question the answers (if dual-stack, then what?)
5. Don’t boil the ocean
 1. Tether is still IPv4-only
 2. Old phone are still IPv4
Summary

• IPv4 does not fit the business needs to grow the edge of our networks fueled by growth from internet of things and cloud
• IPv6 works today and is deployed on some of the largest edge networks, backbones, and content clouds
• 464XLAT allows networks to grow without many public IPv4 addresses
• With IPv6-only networks being deployed, IPv4 is now a legacy liability ...going the way of Windows XP

Big Picture: We must avoid the Internet’s largest growth engines (mobile, cloud, “things”) from being indefinitely tied to scarce IPv4 and fragile stateful NAT44.