Migrating AmLight from legacy to SDN: Challenges, Results and Next Steps

Jeronimo A. Bezerra
Florida International University
<jbezerra@fiu.edu>
Agenda

- Who are we?
- What is SDN?
- Step by Step with use case
- Future
Who we are

• AMPATH:
 – Academic IXP based in Miami
 – Interconnects Latin America RENs to other RENs in the world

• AmLight:
 – A set of 4 x 10G links used to connect Latin America RENs to AMPATH

• Partnership among FIU, NSF, ANSP, RNP, RedClara, AURA and REUNA
Recap: What is SDN?

• *Software Defined Network* decouples Control Plane from Data Plane:
 – Forwarding decision managed by an external network controller

• Standard interface for the communication between the network controller and the switches:
 – A *standard* protocol was developed: Openflow
 – Openflow 1.0 and 1.3 is deployed and supported by lots of vendors
 – Most of the current switches which supports OpenFlow supports Hybrid Mode
 • Some ports using OpenFlow, some ports using legacy protocol
 – Some switches also support **Hybrid Ports**
 • OpenFlow and legacy traffic in the same port
 • Useful for an easy and incremental deployment
But what is SDN? (2/2)

• With SDN, the network controller would be responsible for all network configurations:
 – Network connectivity, including a loop-free topology
 – Rate-limits, prioritization, statistics
 – And new services/deployments:
 • Security, new protocols, new applications, etc.

• Do you want to go deeper?
 – Open Networking Foundation:
 • https://www.opennetworking.org
 “Software-Defined Networking: The New Norm for Networks”
 “SDN Migration Considerations and Use Cases”

 – Openflow Specifications:
 • https://www.opennetworking.org/openflow-conformance-certification
Step by Step to migrate to SDN:
AmLight Use Case
Step 1: Know your network

- Document everything you have in operation:
 - Link Aggregation/LACP,
 - VLANs/Spanning-Tree/QinQ,
 - MPLS/Routing/L2VPN, L3VPN, QoS,
 - Fast ReRoute, BFD,
 - Port Mirroring, IPS/IDS

- Knowing what you have will help you choose controllers and applications
 - It doesn’t mean you will find applications that support everything!
Step 1: Know your network (2)

• AmLight’s Operations are based on Layer 2
 – Layer 3 services are managed between users and AMPATH

• At AmLight we had:
 • Link Aggregation (MCT + LACP)
 • VLANs + per VLAN Rapid Spanning-Tree
 • Port Mirroring
Step 2: Assessments of your devices

• Supported protocols:
 – Openflow
 • Which version?
 – Netconf, Yang?

• Openflow implementation phase:
 – Beta, Testing or stable?

• Openflow’s *Optional* features
 – Metering, Port Group, LACP, etc.

• Is Hybrid port supported?
Step 2: Assessments of your devices (2)

AmLight use case:

• Brocade MLXe/XMR/CES switches:
 – Openflow 1.0 and 1.3 (1.3 started on Dec 2014)
 – Amount of flows supported
 • MLXe (-D)/XMR: 64k flows (per-system and per-module), 4k per port
 • CES: 4k flows (L2) or 2k flows (L2/L3)
 – Support for Hybrid port
 • MLXe/XMR: 2k Protected vs 4k Unprotected VLAN IDs
 • CES: Doesn’t support Hybrid Port
 – Amount of controllers supported
 • MLXe/XMR and CES: 3 (active or passive)
 • SSL optional (max of two)
 – Kind of matches supported:
 • MLXe/XMR: L2, L3, L2/L3 (L2/L3 only on 8x10G and 2x100G)
 • CES: L2 and L2/L3 (L3 in future)
 – Default actions:
 • Drop packets or Sent to controller
 – Statistics per Flow
 • MLXe/XMR: all
 • CES: First 2k flows
Step 2: Assessments of your devices (3)

- Brocade MLX/XMR/CES (cont.)
 - Layer 2 Control Protocols not supported on Openflow ports (even hybrid ports)
 - No STP, RSTP, etc.
 - Only 40 legacy VLANs supported on Hybrid Ports
 - No switching from LOCAL and NORMAL ports
 - Openflow and Legacy don’t talk between them
 - Gen1 switching modules (4x10G) only support LLDP for generic flows
 - Also have counters limitations
 - Link Aggregation is not supported

- Network devices’ hardware will always matters!
 - There will always be limitations due to the chosen internal components
Step 3: Openflow Controller and Orchestrator

- **Controller vs Orchestrator**
 - Controller: manages the southbound interface
 - Orchestrator: business application

- **In-house development? Use one available?**
 - Does it support your applications/services in use?

- **Do you need network virtualization/slicing?**

<table>
<thead>
<tr>
<th>Controller</th>
<th>Interface(s)</th>
<th>Lang</th>
<th>Modules</th>
<th>Licenses</th>
<th>OF 1.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOX</td>
<td>Native/WS</td>
<td>C++</td>
<td>yes</td>
<td>Apache</td>
<td>branch</td>
</tr>
<tr>
<td>POX</td>
<td>Native/WS</td>
<td>Python</td>
<td>yes</td>
<td>GPLv3</td>
<td></td>
</tr>
<tr>
<td>FloodLight</td>
<td>Native,WS</td>
<td>Java</td>
<td>yes</td>
<td>Apache</td>
<td>no date</td>
</tr>
<tr>
<td>OpenDayLight</td>
<td>Native,WS</td>
<td>Java</td>
<td>yes</td>
<td>EPL</td>
<td>yes</td>
</tr>
<tr>
<td>RYU</td>
<td>Native/WS</td>
<td>Python</td>
<td>yes</td>
<td>Apache</td>
<td>yes</td>
</tr>
</tbody>
</table>
AmLight Use Case:

- OpenFlow 1.0
- Controller: NOX
- Orchestrator: Internet2 OESS
 - Supports Layer 2 provisioning via Web User Interface
 - Supports OSCARS (multi-domain provisioning – useful for RENs)
- New feature added:
 - Network Virtualization: FlowSpace Firewall
Step 4: Openflow control plane network

• Where to place the controller?
 – Important question for WAN, not that much for Campus/Datacenters
 – How many controllers?
 • One per site, One per domain?

• How to reach all network devices from controller?
 – In band?
 • Most vendors don’t support Openflow messages over Openflow flow entries
 – Out of Band?
 • Is there connectivity restraint? New interfaces required?
Step 4: Openflow control plane network (2)

AmLight Use Case:
- 2 switches in Miami
- 1 switch in Brazil (SouthernLight)
- 1 switch in Chile (AndesLight)

Ring topology:
- Just two links per switch
- Chile’s switch doesn’t support hybrid port

Final configuration:
 - Out of band through a third party network
 - Controller in Miami (closed to the “SDN” Engineers)
Step 5: Security

• Use SSL or not for the control plane?
 – With SSL: secure communication, not all controllers support. Hard to troubleshoot (*tcpdump*)
 – Without SSL: insecure, all controllers support, easy troubleshooting

• Control the **amount of flows** per slice/virtualized network

• Create **flow insertion rate-limit** per slice/virtualized network

• How to troubleshoot in a passive way through a secure approach?
Step 5: Security (2)

AmLight Use Case:

• Use SSL or not for the control plane?
 – Without SSL: easy troubleshooting
 – Limited to 4000 L2/L3 flows (360 in use)
 – 40 flows/sec flow insertion rate-limit (15 observed)

• How to troubleshoot in a passive way through a secure approach?
 – Working on it!
Step 6: Deployment

- New skills required: Linux, Log Reading, Coding (Python or Java), etc.
- Start with **mininet**, try to reproduce your services and configurations
- Create a testing environment with real switches and, if possible, the same vendors and models
- If possible, deploy it **gradually**, for example, start with layer 2 services
Step 6: Deployment (2)

AmLight Use Case:

- Started on April 30th, Deployed on August 30th
- A few tools developed for troubleshooting
- New skills acquired: Openflow and Python (Linux was part of our routine)
Lessons Learned

• Train your team, document everything
 – Be prepared to develop some code: no controller will support everything you need

• Keep your testing environment available:
 – Every required change and/or upgrade in the future must be tested/applied on this environment

• Be prepared for surprises and crashes:
 – No vendor/switch is mistake-free.
 – Have you Disaster Recovery Plan ready
Future

• Define a methodology to
 – test new vendor/controller software;
 – validate new Openflow switches;
 – troubleshoot;
 – validate the OpenFlow forwarding actions are working;

• Deploy New Applications?
 – DDoS control (ONS 2014 IDOL)
 – Software Defined Internet Exchanges (SDX)
AmLight Today: Results

Provisioning:

<table>
<thead>
<tr>
<th>Domains involved in the path</th>
<th>Average time to provision a new circuit</th>
<th>Avg. number of e-mails exchanged</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNP, ANSP, RedCLARA, AmLight, Internet2, ESnet</td>
<td>5 days</td>
<td>10</td>
</tr>
<tr>
<td>Other domains using OSCARS or NSI support</td>
<td>< 5 minutes</td>
<td>0</td>
</tr>
<tr>
<td>Other domains using OSCARS or NSI support</td>
<td>12 days</td>
<td>65</td>
</tr>
</tbody>
</table>

Programmability:

<table>
<thead>
<tr>
<th>Network Access and Programmability</th>
<th>Before SDN</th>
<th>After SDN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network View</td>
<td>SNMP</td>
<td>SNMP and Openflow</td>
</tr>
<tr>
<td>Provisioning Defined by the User</td>
<td>-</td>
<td>Full Openflow access through a dedicated slice</td>
</tr>
<tr>
<td>Multipath experiments</td>
<td>Static paths offered</td>
<td></td>
</tr>
<tr>
<td>Flow controlled hop-by-hop</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Questions? Comments?

www.sdn.amlight.net

Migrating AmLight from legacy to SDN: Challenges, Results and Next Steps

Jeronimo A. Bezerra
Florida International University
<jbezerra@fiu.edu>