Memory, multi-100Gbps interfaces and their impact on network design

Rafal Szarecki
Juniper Networks
Problem

• 100GE is here. We are heading 400GE
 – 250+ Mpps sequential processing for lookup/match. Multiple memory access per packet.
 – 10’s Gbps Read lookup result.
 – 800Gbps Memory (netto + ECC) for Packet Buffer. (WR+RD)

• What is that memory?
On-Chip memory

- Fast, SRAM-type
- Small in size
 - Small FIB (100k-200k entries)
 - Shallow DBB – ~100 micro-seconds or less
- No need for power board lines
- Simple system design – no signal integrity issues.
Off-chip - DDR4

- 2.4Gbps (today, 3.2 max in future) per pin.
- To make 800Gbps \rightarrow 336 pins /42 Bytes wide – not power of 2 \rightarrow 512 pin (64 Bytes wide bus).
- Each pin drain power
- Each pin adds complexity to signal integrity and board real estate design.
- Wide bus is not good for lookup memory – many of memory access to return only pointer 2-4B of usefull data out of 64B
Off-chip - alternatives

- Hybrid Memory Cubes (HMC)
 - Proprietary
 - Fewer serdes running at high data rate (1.28Tbps agg – 48 serdes)
 - Much less issues with SI, space, traces routes. Less power.
 - Production - 2014
- High Bandwidth Memory
 - Wide interface (a lot of parallel lines) – SI, power and board real-estate issue.
 - To be packaged together w/ processor (ASIC). Use TSV for massive parallel connections
 - Production - 2015
- Both are “3D” memory – DRAM die stacked one on the another.
- Both are expensive and not in economy of scale camp.
- So fare limited capacity
Impact on network gear

• Type A
 – Low scale FIB,
 – shallow buffer (10s of uSec)
 – Low cost
 – Made base on packet processors w/ on-chip memory

• Type B
 – Full FIB (2-4M+ as today)
 – Deep DBB (10s of mSec). QoS queues, DiffServ Scheduling, etc
 – Significantly higher cost.
 – Made base on packet processors w/ off-chip memory
Network Design (1)

- Knowledge what traffic is on top of your network is key.
 - OK for limited FIB?
 - OK to relay on application level to deal with losses?
 - SLA KPI defined at application level – user experience.
 - Control application and/or OS (e.g. TCP tuning, App loss detection and retransmission)
 - OK to overprovisioning Capacity?
 - Physical media (FO) and interface (-SR laser) need to be cheap.
 - Runs well below link speed even during failure. Prevent Micro-burst do fill shallow buffer.
 - All traffic is premium – QoS scheduling not so efficient – individual queue is just few packets.
 - 50% link fill rule not applicable – should be less.

- IF yes then type A is fine.
Network Design (2)

• Otherwise Type B
• It will cost you more on Network device
 – Memory is going to be expensive.
 – It will drain more power (then type A)
 – More chips is more chips
• Save on media acquisition - FO rental.
 – Can drive each link to 100%+ during failure.
 – QoS Scheduling allows to manage and mitigate impact of packet loss and delay.
 – 50% link fill rule not applicable – could and should be more for better economics.